Ground Software Errors Can Cause Satellites to Fail too—Lessons Learned

4 March 2003

Paul G. Cheng

Risk Assessment & Management Subdivision
Systems Engineering Division
Software Increasingly Matters

FSW SLOC Count

Over half of failures between 1998 and 2000 involved software

SW-Related Failures

FSW SLOC = Flight Software Source Lines of Codes

1962
Mariner I (Atlas)
1990
Intelsat 6 (Titan CT2)
1991
Orbcomm X
1994
Clementine
1999
Milstar 2-1
1999
MCO
1999
Terriers
1999
MPL

1988
Phobos 1
1996
Cluster (Ariane 501)
1998
SOHO
1998
STRV x 2
2000
ICO F1 (Sea Launch)
2000
QuickBird (Cosmos 3M)

NEAR and Phobos 2 not counted
Software Mistakes Are Underappreciated

• Small error can be fatal
• Redundancy ineffective
• Risks do not necessarily decrease over time
• Involves more human factors

• Imperative to make software more robust
SE Problems Caused Most Major SW Anomalies

• Incomplete requirement implementation
 – Mars Polar Lander, Space Technology Research Vehicle (STRV)
• Improper software changes or code reuse
 – Ariane 501, Solar & Heliospheric Observatory (SOHO)
• Inadequate configuration management process
 – Terriers, Titan CT-2

• Mistakes are all too often repeated

We do not invent new mistakes, we just repeat old mistakes.

Dr. Bill Ballhaus (CEO, The Aerospace Corp.)
Aerospace’s Space Systems Engineering Lessons Learned System

• Broadly scoped
 – Uses actual mishaps to concisely highlight common threads among failings

• Publish lessons each quarter
 – Software is a recurring theme
 – Widely distributed to external community
Examples of Fatal Ground Software Error

Mars Climate Orbiter Failure

• Thruster firing model, reused from a previous mission, was in metric. Thruster vendor supplied data in English units.

• In the previous mission, engineers correctly inserted a 4.45 factor to convert lb-force to Newton.

• A new thruster was used, and the vendor’s new (English unit) equation was pasted into the model without the 4.45 factor:
 – Spec was overlooked
 – Original code had no warning remarks
 – Ground software viewed as non-critical
 – Truth table, manually computed, had the same mistake
 – Tests not thorough

Compounded by GN&C inadequacy, mistake turned deadly
Sea Launch F3 (ICO) Failure*

- Need to launch at a particular time - Time variable changed name; from time$_A$ to time$_B$
- Change affected the ground software controlling a valve
- Before Change:
 “If the state is Abort (or countdown proceeds past time$_A$ = X), close Valve A”
- Should be:
 “If the state is Abort (or countdown proceeds past time$_B$ = X), close Valve A”
- As Coded:
 “If the state is Abort, close Valve A”

Valve kept open - Launch Failed

*: Details Sanitized
Lessons

• *Errors in ground software can be fatal too.*

• Validate *mission-critical element changes* with *more vigor* than the original development.

Fools say that they learn by experience. I prefer to profit by others’ experience.

Otto Bismarck