A COTS-Based Reference Architecture for Satellite Ground Systems

Kevin M. Hassett
Computer Sciences Corporation
Systems Sciences Division
Outline

• Architectural Principles
• Why A COTS-Based Architecture?
• Layered Network Approach
• Ground/Space Trades
• Standards
• Conclusions
Architecture Principles

- Framework should maximize the reuse of complete off-the-shelf components
- Flexible framework that allows the mission developer the opportunity to tradeoff features and risk in the design of the overall mission
Why A COTS-Based Architecture?

- Maximize component choices and minimize dependence on any specific supplier
- Spread maintenance cost across multiple organizations
Layered Network Approach
Architecture Layers

Global Services

Local Area Services

Platform Services
Platform Services

Platform Services

Network

Physical network - Ethernet, FDDI, ATM,

(Layers 1 & 2)

O/S Services

Platform Hardware Resources

Platform

Platform-Dependent Applications

Network Transparency Middleware

Network Applications

(Layers 5 & 6)

Internet Protocol
(Layer 3)

Data Transport
(TCP, UDP)

(Layer 4)

(Layer 7)

Platform Services

Platform Hardware Resources

Data Transport
(TCP, UDP)

(Layer 4)

Internet Protocol
(Layer 3)

Network Transparency Middleware

Network Applications

(Layer 7)

Platform-Dependent Applications

Platform Services

O/S Services

Platform Hardware Resources

Physical network - Ethernet, FDDI, ATM,

(Layers 1 & 2)
Local Area Cell Architecture

- Gateway Process
- GS Ctl Apps
- Mission Operations Apps
- Payload Apps
- Local Area Services
Global Services Architecture

- Spacecraft Cell
- Gateway Process
- Ground Station Ops Cell
- Gateway Process
- Vehicle Ops Cell
- Gateway Process
- Payload Ops Cell

Wide Area Network Services
Ground/Space Trades
Architecture Addresses Multiple Dimensions of Mission System

- Frequency of Contacts
- Downlink Rate
- Number of Spacecraft
- MB/Day
Ground/Space Trades

- Architecture allows functions to be moved between ground and space
 - Architecture addresses entire mission system as a whole network, not as two separate systems
 - Network transparency allows applications to be anywhere in the network and still interact
 - Trades based on multi-dimensional aspects of the problem
Ground Space/Trades

• System is built to meet mission needs
 – Network approach allows applications to be seen as individual pieces
 – Selection of pieces is based on mission needs
 – Designer can easily trade off cost of a component against risk of not having the functionality
 – Mission only pays for applications that it needs
Standards
Standards

- Establish a core of widely accepted and supported standards (Global standards)
- Supplement with a wider set of system implementation standards (Mission standards)
- Differentiate between integration and development standards
Standards Categories

<table>
<thead>
<tr>
<th>Integration</th>
<th>Global</th>
<th>Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Used when selecting building blocks</td>
<td>Additional standards needed to integrate a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>given mission</td>
</tr>
<tr>
<td>Development</td>
<td>Applied when developing software to be part</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of a product line</td>
<td>Applied when developing mission unique soft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ware</td>
</tr>
</tbody>
</table>
Prototypes

• IMACCS
 – Demonstrated feasibility of integrating a ground data system using COTS

• BIOS
 – Demonstrated use of network transparency layer (CORBA) to allow movement of components within an overall architecture
Conclusions

• Architecture is flexible enough to accommodate a wide range of mission requirements
• Network transparency provides for the capability to trade functions easily between ground and space
• Standards facilitate integration without unnecessary constraint
Acknowledgments

Support by NASA under contracts NAS5-31500, NAS5-31000, and GS-35F-4381G is gratefully acknowledged. In particular, collaboration with Gary Meyers and Robert Connerton of the Renaissance team at GSFC during the entire architecture development activity was particularly valuable. Discussion and comments from my coworkers at CSC was essential to success. Particularly valuable guidance was provided by Dr. Alan Stottlemyer, who led the architecture definition team for CSC, and from CSC Renaissance Team members Keith Hogie, Edward Stokes, James Langston, and Rex Pendley.
References

References 1 and 2 are available through Mr. Gary Meyers, NASA/GSFC, Greenbelt, MD 20771.
Sample Logical Architecture Implementation
Sample Implementation Features

- Device Control/Management provides gateway functions between primary control center cell and ground site cells
- Database server replication features provides gateway functions between primary control center cell and backup control center cell
• Each component was specified with a set of COTS products
• COTS products selection was a mix of command & control applications and system/network management tools
• Spacecraft could be easily integrated as a cell using the Device Control/Management functionality