Emerging Trends in Ground Station Software Architectures

Vincent J. Kovarik Jr., Ph.D.
Software Technology Inc.
Melbourne, FL
Survival

• Ground station software is becoming market-driven.
• Monolithic or custom solutions cannot compete in a schedule and cost driven world.
• Solutions need to be:
 – Open
 – Modular
 – Reusable
 – Distributed
 – Multi-Mission/Platform
 – Client/Server
• The future belongs to plug-n-play products.
Evolving Software Architectures

- **Architectures based on frameworks (aka patterns)**
 - Model-View-Controller
 - Asynchronous Event-driven applications

- **Languages are supporting higher levels of abstraction.**
 - Representation is moving further away from the machine
 - More direct representation of the system entities.

- **Distributed computing demands more interoperability.**
 - Higher-level protocol between applications must be defined.

- **Open/Industry standards are significant criteria.**
 - Increased longevity
 - Interoperable with new products
 - SuperMOCA
Open Architecture for Ground Systems
Open Architecture for Ground Systems

[Diagram of Open Architecture for Ground Systems]

- Network Element
- Satellite
- Device Network Transport
- Telemetry Transport
- Command Transport
- Device Command Language
- Telemetry Conversion
- Logical Device Interfaces
- Transport Services
- Physical device(s)
- Open Architecture for Ground Systems
Open Architecture for Ground Systems
Open Architecture for Ground Systems

- **Planning, scheduling and system-wide resource management**
- **Device model and logical control**
- **Logical Device Interfaces**
- **Transport Services**
- **Physical device(s)**

Device Network Transport

Telemetry Transport

Device Command Language

Command Transport

Telemetry Conversion

Structural Model

System Model

Behavioral Model

Scripting Language

Planner/Scheduler
Open Architecture for Ground Systems

Human Computer Interface

- Planner/Scheduler
- System Model
- Scripting Language
- Behavioral Model
- Structural Model

Telemetry Conversion
- Device Command Language

Telemetry Transport
- Command Transport

Device Network Transport
- Satellite

Logical Device Interfaces
- Transport Services

Device model and logical control
- Planning, scheduling and system-wide resource management

Physical device(s)

Distributed HCI
Open Architecture for Ground Systems

- Human Computer Interface
- Planner/Scheduler
- System Model
- Scripting Language
- Behavioral Model
- Structural Model
- Telemetry Conversion
- Device Command Language
- Telemetry Transport
- Command Transport
- Device Network Transport
- Satellite
- Network Element

- Infrastructure and common services
 - Software BUS
 - Recording and Logging
 - Persistence / Databases
 - Orbit Determination

- Distributed HCI
 - Planning, scheduling and system-wide resource management
 - Device model and logical control
 - Logical Device Interfaces
 - Transport Services
 - Physical device(s)
• Architected as a UNIX-based distributed system.
 – Employs Client/Server architecture
• Recognized the need for and implemented a distributed software bus.
• Follows vertical partitioning and encapsulation.
 – Independent applications communicating over SW bus
• Being applied to significant satellite programs:
 – Navy Space
 – IRIDIUM
 – GPS
 – INTELSAT
Next Generation OS/COMET

• Provide a more robust model of satellite, devices, and network.
 – Support complex relationships.
 – Model-based reasoning

• Expand use of distributed computing standards.
 – Software bus, open standards

• Increased interoperability with third-party software.
 – G2, Satellite Tool Kit, Orbix, Nexpert

• Autonomous monitoring and control
 – Fault detection, mission planning

• Increased use of graphical user views.
 – Consolidate information to reduce operator overload.
The Road Ahead

- Standards in satellite industry.
- Distributed computing driven by standards.
- Message-based (context independent) interaction between applications.
- Plug-and-play software “machines” rather than software “reuse.”
- Robust representation of satellites, constellations, networks, and ground station assets.
- Winners will be those who provide significant value-added capabilities in one or more of the architecture components.