
Scope of Software Architectures 1

CS 612: Software Architectures January 26, 1999

Review — Software Architecture Goals

■ Control inherent software complexity
❏ elevate abstraction levels
❏ match developers’ mental models

■ Explicitly address a system’s conceptual underpinnings
❏ act on the blueprint instead of the system itself
❏ address complexity
❏ increase reuse and component marketplace potential
❏ reduce development costs
❏ shift development approach to a component-based

philosophy

machine
language

developer’s
mental

assembly
language

procedural
programming

language

object-oriented
programming

language

(semi)formal
specification

language

binary
bits

model

elementary
instructions

lines-of-code
or procedures

lines-of-code
or classes

mathematical
constructs

Scope of Software Architectures 2

CS 612: Software Architectures January 26, 1999

Review — Focus of Architectures

■ System structure

■ System-level properties

■ Key role in the software lifecycle
❏ a framework for satisfying requirements
❏ technical basis for design
❏ managerial basis for cost estimation & process management
❏ effective basis for reuse
❏ basis for consistency and dependency analysis
❏ basis for implementation

Scope of Software Architectures 3

CS 612: Software Architectures January 26, 1999

Review — Definitions

■ Perry and Wolf
❏ Software Architecture = { Elements, Form, Rationale }

■ Shaw and Garlan
❏ Software architecture [is a level of design that] involves the

description of elements from which systems are built,
interactions among those elements, patterns that guide their
composition, and constraints on these patterns.

■ Canonical building blocks
❏ component — locus of computation and state
❏ connector — element that models interactions among

components and rules that govern those interactions
❏ configuration — connected graph of components and

connectors which describes architectural structure

Scope of Software Architectures 4

CS 612: Software Architectures January 26, 1999

Review — Architectural Perspectives

Architectural
View

Level of
Abstraction

structural

structural

data flow

control flow

process

implementation

source
code

designhigh level
architecture

. . .

requirements

textual

graphical

Scope of Software Architectures 5

CS 612: Software Architectures January 26, 1999

Review — Architectural Domains

■ Classes of problems or areas of concern in architecture

Representation

Design Process Support

Analysis

Evolution

Refinement

Traceability

Simulation/Executability

Static

Dynamic

Specification-Time

Execution-Time

Scope of Software Architectures 6

CS 612: Software Architectures January 26, 1999

Scope of Software Architectures

■ Every system has an architecture

■ Details of the architecture are a reflection of system
requirements and trade-offs that made to satisfy them

■ Possible decision factors
❏ performance
❏ compatibility with legacy software
❏ planning for reuse
❏ distribution profile

❏ current and future

❏ safety, security, fault tolerance
❏ evolvability

❏ changes to processing algorithms

❏ changes to data representation

❏ modifications to the structure/functionality

Scope of Software Architectures 7

CS 612: Software Architectures January 26, 1999

Case Study: Key Word In Context

HELLO WORLD

I AM YODA

AM YODA I
HELLO WORLD

I AM YODA

WORLD HELLO

YODA I AM

HELLO WORLD

WORLD HELLO

I AM YODA

AM YODA I
YODA I AM

Scope of Software Architectures 8

CS 612: Software Architectures January 26, 1999

KWIC Architecture: Shared Data

Master
Control

Input
Circular

Shift Alphabetizer Output

Characters Index
Alphabetized

Index

Input
Medium

Output
Medium

Scope of Software Architectures 9

CS 612: Software Architectures January 26, 1999

Shared Data Pros and Cons

+ Efficiency
→ shared data
→ efficient data representation
→ sequential data access

+ Intuitive structure

- Changeability
→ data format not abstracted away
→ functional elements dependent on data representation

- Support for reuse

Scope of Software Architectures 10

CS 612: Software Architectures January 26, 1999

KWIC Architecture: ADT

Master
Control

Input Output

Input
Medium

Output
Medium

Circular Shift

se
tu

p

se
tc

ha
r

ch
ar

w
or

d

Alphabetic

al
ph i t
h

Shifts
Characters

ch
ar

w
or

d

se
tc

ha
r

Scope of Software Architectures 11

CS 612: Software Architectures January 26, 1999

ADT Pros and Cons

+ Intuitive structure

+ Changeability
→ data format abstracted away inside ADTs
→ modification of the processing algorithm isolated to individual

modules

+ Support for reuse
→ fewer assumptions about the rest of the system

- Expansion of functionality
→ sacrifice either conceptual simplicity or performance

Scope of Software Architectures 12

CS 612: Software Architectures January 26, 1999

KWIC Architecture: Implicit Invocation

Master
Control

Input
Circular

Shift Alphabetizer Output

Lines
Input

Medium
Output
Medium

in
se

rt

de
le

te

it
h

Lines

in
se

rt

de
le

te

it
h

Scope of Software Architectures 13

CS 612: Software Architectures January 26, 1999

Implicit Invocation Pros and Cons

+ Intuitive structure

+ Data format abstracted away and “activated”

+ Changeability
→ functional enhancements easy
→ computation separate from data representation

+ Support for reuse
→ modules rely on events, not other modules

- Processing order

- Efficiency
→ data-driven solution leads to a bigger footprint

Scope of Software Architectures 14

CS 612: Software Architectures January 26, 1999

KWIC Architecture: Pipe and Filter

Input
Circular

Shift

Alphabetizer Output

Input
Medium

Output
Medium

Scope of Software Architectures 15

CS 612: Software Architectures January 26, 1999

Pipe&Filter Pros and Cons

+ Intuitive structure and processing flow

+ Support for reuse
→ filters operate in isolation
→ expect only data of particular format

+ Changeability
→ easy addition of new filters

- Impossible to evolve into an interactive system

- Efficiency
→ each filter copies all data to its output ports

Scope of Software Architectures 16

CS 612: Software Architectures January 26, 1999

Instrumentation Software

■ Oscilloscopes are instrumentation devices that
→ transform electrical signals into visual images
→ perform measurements on signals
→ support multiple user displays

■ Oscilloscopes are complex
❏ perform many measurements
❏ require a lot of storage
❏ interface with other instruments and computer networks
❏ provide a sophisticated UI

■ Goal: develop a reusable system architecture for
oscilloscopes

❏ develop a common “core” architecture
❏ grow a product line around that core
❏ allow expansion into other domains

Scope of Software Architectures 17

CS 612: Software Architectures January 26, 1999

Oscilloscope Architecture — OO

- No overall model of how the data types fit together

- Problem of partitioning the functionality

Oscilloscope
Object

Waveform
Object

Signal
Object

. . .

Max-min
Waveform

X-Y
Waveform . . .

Scope of Software Architectures 18

CS 612: Software Architectures January 26, 1999

Oscilloscope Architecture — Layered

+ Intuitively appealing

- Wrong for the application domain
❏ actual oscilloscope functions cross layers

Core

Acquisition

Manipulation

Visualization

UI

Scope of Software Architectures 19

CS 612: Software Architectures January 26, 1999

Oscilloscope Architecture — Pipe&Filter

+ Functions not isolated into separate partitions

+ Data flow nature of signal processing is reflected

+ Allows combination and substitution of software and
hardware components

- Does not enable the user to interact with the system

Acquire

Trigger
Measure

Couple To-XY Clip

Subsystem

Signal

Times Waveform
Trace

Measurement

Scope of Software Architectures 20

CS 612: Software Architectures January 26, 1999

Oscilloscope Architecture — Modified Pipe&Filter

■ Solution: add control interfaces to filters

+ Explicates modifiable parts of a filter

+ Decouples signal processing functions from the UI

- Poor performance
❏ each filter copies data
❏ slow filters present bottlenecks
→ alleviated by flexible pipes (connectors)

Acquire

Trigger Measure

Couple To-XY Clip

Subsystem

Signal

Times Waveform
Trace

Measurement

Scope of Software Architectures 21

CS 612: Software Architectures January 26, 1999

Mobile Robotics

■ Manned or partially manned vehicles

■ Uses
❏ space exploration
❏ hazardous waste disposal
❏ underwater exploration

■ Issues
→ interface with external sensors and actuators
→ real-time response to stimuli
→ response to obstacles
→ sensor input fidelity
→ power failures
→ mechanical limitations
→ unpredictable events

Scope of Software Architectures 22

CS 612: Software Architectures January 26, 1999

Basic Mobile Robot Architectural Requirements

■ Accommodate goal accomplishment in the face of
obstacles

■ Allow for uncertainty resulting from incomplete or
unreliable information

■ Handle dangers introduced by the environment
❏ fault tolerance
❏ safety
❏ performance

■ Exhibit flexibility
❏ experimentation
❏ reconfiguration
❏ regular modification

Scope of Software Architectures 23

CS 612: Software Architectures January 26, 1999

Mobile Robot Architecture — Control Loop

- Obstacles

- Uncertainty

+ Dangers

+ Flexibility

Actuators Sensors

Controller

Environment

Scope of Software Architectures 24

CS 612: Software Architectures January 26, 1999

Mobile Robot Architecture — Layered

8 Supervisor

7 Global Planning

6 Control

5 Navigation

4 Real-World Modeling

3 Sensor Integration

2 Sensor Interpretation

1 Robot Control

Environment

- Obstacles

+ Uncertainty

+ Dangers

- Flexibility

Scope of Software Architectures 25

CS 612: Software Architectures January 26, 1999

Mobile Robot Architecture — Implicit Invocation

■ Task trees — hierarchies of tasks
❏ tasks temporally interdependent
→ allows specification of selective concurrency

■ Tasks communicate by multicasting messages
❏ a server directs messages to registered tasks

Task

Task

Task

Task

Task
Message
Server

M

DM

E

WT

+ Obstacles

- Uncertainty

+ Dangers

+ Flexibility

Scope of Software Architectures 26

CS 612: Software Architectures January 26, 1999

Mobile Robot Architecture — Blackboard

■ Obstacles

■ Uncertainty

■ Dangers

+ Flexibility

Environment
Monitor

Overall
Supervisor

High Level
Path Planner

Motor
Controller

BLACKBOARD

Raw Input Interpreters

Scope of Software Architectures 27

CS 612: Software Architectures January 26, 1999

Compiler Architecture Revisited

Lexer

Parser

Semantor

Optimizer

Code
Generator

Sequential

Lexer Parser Semantor

Internal
Representation

Parallel

Scope of Software Architectures 28

CS 612: Software Architectures January 26, 1999

Compiler Architecture Pros and Cons

Sequential

+ Conceptual simplicity

+ Architecture reflects control flow

- Performance

Parallel

+ Performance

+ Adaptability

- Synchronization

- Coordination
→ analysis and testing

