
1 of 24

A Classification and Comparison Framework for
Software Architecture Description Languages

Nenad Medvidovic and Richard N. Taylor

Abstract—Software architectures shift the focus of developers from lines-of-code to coarser-grained architectural elements and their
overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notations to support archi-
tecture-based development. There is, however, little consensus in the research community on what is an ADL, what aspects of an architec-
ture should be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem. Furthermore, the
distinction is rarely made between ADLs on one hand and formal specification, module interconnection, simulation, and programming
languages on the other. This paper attempts to provide an answer to these questions. It motivates and presents a definition and a classifica-
tion framework for ADLs. The utility of the definition is demonstrated by using it to differentiate ADLs from other modeling notations.
The framework is used to classify and compare several existing ADLs, enabling us in the process to identify key properties of ADLs. The
comparison highlights areas where existing ADLs provide extensive support and those in which they are deficient, suggesting a research
agenda for the future.

Index Terms—Software architecture, architecture description language, component, connector, configuration, definition, classification,
comparison.

1 INTRODUCTION

Software architecture research is directed at reducing costs of
developing applications and increasing the potential for common-
ality between different members of a closely related product fam-
ily [54], [66]. Software development based on common
architectural idioms has its focus shifted from lines-of-code to
coarser-grained architectural elements (software components and
connectors) and their overall interconnection structure. To sup-
port architecture-based development, formal modeling notations
and analysis and development tools that operate on architectural
specifications are needed. Architecture description languages
(ADLs) and their accompanying toolsets have been proposed as
the answer. Loosely defined, “an ADL for software applications
focuses on the high-level structure of the overall application
rather than the implementation details of any specific source mod-
ule” [71]. ADLs have recently become an area of intense research
in the software architecture community [11], [16], [73], [37].

A number of ADLs have been proposed for modeling architec-
tures both within a particular domain and as general-purpose
architecture modeling languages. In this paper, we specifically
consider those languages most commonly referred to as ADLs:
Aesop [14], [12], ArTek [69], C2 [39], [42], Darwin [35], [36],
LILEANNA [70], MetaH [6], [72], Rapide [31], [32], SADL
[46], [47], UniCon [62], [63], Weaves [20], [21], and Wright [2],

[4].1 Recently, initial work has been done on an architecture inter-
change language, ACME [15], which is intended to support map-
ping of architectural specifications from one ADL to another, and
hence enable integration of support tools across ADLs. Although,
strictly speaking, ACME is not an ADL, it contains a number of
ADL-like features. Furthermore, it is useful to compare and dif-
ferentiate it from other ADLs to highlight the difference between
an ADL and an interchange language. It is therefore included in
this paper.

There is, however, still little consensus in the research commu-
nity on what an ADL is, what aspects of an architecture should be
modeled by an ADL, and what should be interchanged in an inter-
change language [43]. For example, Rapide may be characterized
as a general-purpose system description language that allows
modeling of component interfaces and their externally visible
behavior, while Wright formalizes the semantics of architectural
connections. Furthermore, the distinction is rarely made between
ADLs on one hand and formal specification, module interconnec-
tion (MIL), simulation, and programming languages on the other.
Indeed, for example, Rapide can be viewed as both an ADL and a
simulation language, while Clements contends that CODE [49], a
parallel programming language, is also an ADL [8].

Another source of discord is the level of support an ADL
should provide to developers. At one end of the spectrum, it can
be argued that the primary role of architectural descriptions is to
aid understanding and communication about a software system.
As such, an ADL must have simple, understandable, and possibly
graphical syntax, well understood, but not necessarily formally
defined semantics, and the kinds of tools that aid visualization,
understanding, and simple analyses of architectural descriptions
(e.g., Argo [59]). At the other end of the spectrum, the tendency

1. The full name of the ADL for modeling architectures in the C2 architectural
style is “C2SADEL.” To distinguish it from SADL, which resulted from an unre-
lated project,C2SADEL will be referred to simply as “C2” in this paper.

• N. Medvidovic is with the University of Southern California.
Email: neno@usc.edu.

• R.N. Taylor is with the University of California, Irvine. E-
mail: taylor@ics.uci.edu.

2 of 24

has been to provide formal syntax and semantics of ADLs, pow-
erful analysis tools, model checkers, parsers, compilers, code
synthesis tools, runtime support tools, and so on (e.g., SADL’s
architecture refinement patterns [47], Darwin’s use ofπ-calculus
to formalize architectural semantics [36], or UniCon’s parser and
compiler [62]). While both perspectives have merit, ADL
researchers have generally adopted one or the other extreme
view. It is our contention that both are important and should be
reflected in an ADL.

Several researchers have attempted to shed light on these
issues, either by surveying what they consider existing ADLs [8],
[27], [28], [71] or by listing “essential requirements” for an ADL
[32], [62], [64], [65]. In our previous work we attempted to
understand and compare ADLs based on problem areas within
software architectures for which they are suited [40]. Each of
these attempts furthers our understanding of what an ADL is;
however, for various reasons, each ultimately falls short in pro-
viding a definitive answer to the question.

This paper builds upon the results of these efforts. It is further
influenced by insights obtained from studying individual ADLs,
relevant elements of languages commonly not considered ADLs
(e.g., programming languages), and experiences and needs of an
ongoing research project, C2. The paper presents a definition and
a relatively concise classification framework for ADLs: an ADL
must explicitly modelcomponents, connectors, and theirconfigu-
rations; furthermore, to be truly usable and useful, it must pro-
vide tool support for architecture-based development and
evolution. These four elements of an ADL are further broken
down into constituent parts.

The remainder of the paper is organized as follows. Section 2
discusses contributions and shortcomings of other attempts at
surveying and classifying ADLs. Section 3 defines our taxonomy
of ADLs and demonstrates its utility by determining whether sev-
eral existing notations are ADLs. Section 4 assesses the above-
mentioned ADLs based on the criteria established in Section 3.
Discussion and conclusions round out the paper.

2 RELATED APPROACHES

Any effort such as this one is based on discoveries and conclu-
sions of other researchers. We closely examined ADL surveys
conducted by Clements and Kogut [8], [27], [28] and Vestal [71].
We also studied several researchers’ attempts at identifying
essential ADL characteristics and requirements: Luckham and
Vera [32], Shaw and colleagues [62], Shaw and Garlan [64], [65],
and Tracz [74]. As a basis for architectural interchange, ACME
[15] gave us key insights into what needs to remain constant
across ADLs. Finally, we built upon our conclusions from earlier
attempts to shed light on the nature and needs of architecture
modeling [40], [42].

2.1 Previous Surveys

Clements and Kogut [8], [27], [28] provide an extensive classi-
fication of existing ADLs. The classification is based on an
exhaustive questionnaire of ADL characteristics and features,
completed by each language’s design team. The survey was con-
ducted in a top-down fashion: the authors used domain analysis

techniques to decide what features an ADL should have and then
assessed existing languages with respect to those features.

While their taxonomy is valuable in bettering our understand-
ing of surveyed ADLs, it comes up short in several respects.
Domain analysis is typically used in well-understood domains,
which is not the case with ADLs. The survey does not provide
any deeper insight into what an ADL is, nor does it present its
criteria for including a particular modeling notation. Quite the
contrary, several surveyed languages are not commonly consid-
ered ADLs, yet little justification is given for their inclusion. Per-
haps most illustrative is the example of Modechart, a
specification language for hard-real-time computer systems [26].
Clements labels Modechart “a language on the edge of ADLs,”
whose utility to the architecture community lies in its sophisti-
cated analysis and model checking toolset [7]. Tool support alone
is not a sufficient reason to consider it an ADL however.

Several of the criteria Kogut and Clements used for ADL eval-
uation, such as the ability to model requirements and algorithms,
are outside an ADL’s scope.2 This kind of survey also runs the
risk of not asking all of the relevant questions. Finally, the
authors often have to extrapolate very specific information from
multiple, potentially subjective, vague, or misunderstood ques-
tions.

Vestal’s approach [71] is more bottom-up. He surveyed four
existing ADLs (LILEANNA, MetaH, Rapide, and QAD [22])
and attempted to identify their common properties. He concluded
that they all model or support the following concepts to some
degree:

• components,
• connections,
• hierarchical composition, where one component contains an

entire subarchitecture,
• computation paradigms, i.e., semantics, constraints, and non-

functional properties,
• communication paradigms,
• underlying formal models,
• tool support for modeling, analysis, evaluation, and verifica-

tion, and
• automatic application code composition.

Although “cursory” (as he qualifies it) and limited in its scope,
Vestal’s survey contains useful insights that bring us closer to
answering the question of what an ADL is. In its approach, our
survey is closer to Vestal’s than to Clements and Kogut’s.

In our previous work [40], we attempted to identify the prob-
lems or areas of concern that need to be addressed by ADLs:

• representation,
• design process support,
• static and dynamic analysis,
• specification-time and execution-time evolution,
• refinement,
• traceability, and
• simulation/executability.

Understanding these areas and their properties is a key to better
understanding the needs of software architectures, architecture-

2. A discussion of the scope of software architectures, and therefore ADLs, is
given by Perry and Wolf [54]. Their conclusions are largely mirrored in the defini-
tion of architectures given by Shaw and Garlan [66].

3 of 24

based development, and architectural description and inter-
change; a study of these areas is also needed to guide the devel-
opment of next-generation ADLs. We demonstrated that each
existing ADL currently supports only a small subset of these
domains, and discussed possible reasons for that.

While we believe that this taxonomy gives the architect a
sound foundation for selecting an ADL and orients discourse
towards problem solving, it is still very much a preliminary con-
tribution. Furthermore, our comparison of ADLs based on these
categories did not reveal what specific characteristics and con-
structs render an ADL well suited for solving a particular set of
problems or whether certain constructs are complementary or
mutually exclusive. Consequently, we believe that a feature-
based classification and comparison of ADLs is also needed.

2.2 Insights from Individual Systems

In [32], Luckham and Vera list requirements for an ADL,
based on their work on Rapide:

• component abstraction,
• communication abstraction,
• communication integrity, which mandates that only compo-

nents that are connected in an architecture may communicate
in the resulting implementation,

• ability to model dynamic architectures,
• hierarchical composition, and
• relativity, or the ability to relate (map) behaviors between

architectures.
As a result of their experience with UniCon, Shaw and col-

leagues list the following properties an ADL should exhibit [62]:
• ability to model components, with property assertions, inter-

faces, and implementations,
• ability to model connectors, with protocols, property asser-

tions and implementations,
• abstraction and encapsulation,
• types and type checking, and
• ability to accommodate analysis tools.
Clearly, the above features alone cannot be considered defini-

tive indicators of how to identify an ADL. They have resulted
from limited experience of two research groups with their own
languages. However, they represent valuable data points in trying
to understand and classify ADLs.

2.3 Attempts at Identifying Underlying Concepts

In [74], Tracz defines an ADL as consisting of four “C”s: com-
ponents, connectors, configurations, and constraints. This taxon-
omy is appealing, especially in its simplicity, but needs further
elaboration: justification for and definitions of the four “C”s,
aspects of each that need to be modeled, necessary tool support,
and so on. Tracz’s taxonomy is similar to Perry and Wolf’s origi-
nal model of software architectures, which consists of elements,
form, and rationale [54]. Perry and Wolf’s elements are Tracz’s
components and connectors, their form subsumes an architectural
configuration, and the rationale is roughly equivalent to con-
straints.

Shaw and Garlan have attempted to identify unifying themes
and motivate research in ADLs. Both authors have successfully

argued the need to treat connectors explicitly, as first-class enti-
ties in an ADL [4], [61], [64]. In [64], they also elaborate six
classes of properties that an ADL should provide: composition,
abstraction, reusability, configuration, heterogeneity, and analy-
sis. They demonstrate that other existing notations, such as infor-
mal diagrams, modularization facilities provided by
programming languages, and MILs, do not satisfy the above
properties and hence cannot fulfill architecture modeling needs.

In [65], Shaw and Garlan identify seven levels of architecture
specification capability:

• capturing architectural information,
• construction of an instance,
• composition of multiple instances,
• selection among design or implementation alternatives,
• verifying adherence of an implementation to specification,
• analysis, and
• automation.

They conclude that, while ADLs invariably provide notations for
capturing system descriptions (level 1), few support other levels.
It is unclear, however, what set of criteria they applied to the dif-
ferent ADLs and how stringent those criteria were, particularly
since this paper will show that a number of ADLs do provide a
considerable amount of support for most of the above capabili-
ties.

Finally, in [43], Medvidovic and colleagues argue that, in order
to adequately support architecture-based development and analy-
sis, one must model architectures at four levels of abstraction:
internal component semantics, component interfaces, component
interconnections in an architecture, and architectural style rules.
This taxonomy presents an accurate high-level view of architec-
ture modeling needs, but is too general to serve as an adequate
ADL comparison framework. Furthermore, it lacks any focus on
connectors.

2.4 Architecture Interchange

Perhaps the closest the research community has come to a con-
sensus on ADLs has been the emerging endorsement by a seg-
ment of the community of ACME as an architecture interchange
language [15]. In order to meaningfully interchange architectural
specifications across ADLs, a common basis for all ADLs must
be established. Garlan and colleagues believe that common basis
to be their core ontology for architectural representation:

• components,
• connectors,
• systems, or configurations of components and connectors,
• ports, or points of interaction with a component,
• roles, or points of interaction with a connector,
• representations, used to model hierarchical compositions,

and
• rep-maps, which map a composite component or connector’s

internal architecture to elements of its external interface.

In ACME, any other aspect of architectural description is repre-
sented with property lists (i.e., it is not core).

ACME has resulted from a careful consideration of issues in
and notations for modeling architectures. As such, it could be
viewed as a good starting point for studying existing ADLs and
developing new ones. However, ACME represents the least com-

4 of 24

mon denominator of existing ADLs rather than a definition of an
ADL. It also does not provide any means for understanding or
classifying those features of an architectural description that are
placed in property lists. Finally, certain structural constraints
imposed by ACME (e.g., a connector may not be directly
attached to another connector), satisfy the needs of some
approaches (e.g., Aesop, UniCon, and Wright), but not of others
(e.g., C2).

3 ADL CLASSIFICATION AND COMPARISON
FRAMEWORK

Individually, none of the above attempts adequately answer the
question of what an ADLis. Instead, they reflect their authors’
views on what an ADLshould haveor should be able to do.
However, a closer study of their collections of features and
requirements shows that there is a common theme among them,
which is used as a guide in formulating our framework for ADL
classification and comparison. To complete the framework, the
characteristics of individual ADLs and summaries of discussions
on ADLs that occurred at the three International Software Archi-
tecture Workshops [11], [73], [37], were studied. To a large
degree, our taxonomy reflects features supported by all, or most,
existing ADLs. In certain cases, we also argue for characteristics
typically not supported by current ADLs, but which have either
been identified in the literature as important for architecture-
based development or have resulted from our experience with our
own research project in software architectures, C2. Finally, we
have tried to learn from and, where relevant, apply the extensive
experience with languages for modeling other aspects of software
in formulating our framework.

To properly enable further discussion, several definitions are
needed. There is no standard, universally accepted definition of
architecture, but we will use as our working definition the one
provided by Shaw and Garlan [66]:

Software architecture [is a level of design that] involves
the description of elements from which systems are built,
interactions among those elements, patterns that guide
their composition, and constraints on these patterns.

An ADL is thus a language that provides features for modeling
a software system’sconceptual architecture, distinguished from
the system’simplementation. ADLs provide both a concrete syn-
tax and a conceptual framework for characterizing architectures
[15]. The conceptual framework typically reflects characteristics
of the domain for which the ADL is intended and/or the architec-
tural style. The framework typically subsumes the ADL’s under-
lying semantic theory (e.g, CSP, Petri nets, finite state machines).

3.1 Framework Categories

We introduce the top-level categories of our ADL classifica-
tion and comparison framework in this section. The building
blocks of an architectural description are (1)components, (2)
connectors, and (3)architectural configurations.3 An ADL must
provide the means for theirexplicit specification; this enables us
to determine whether or not a particular notation is an ADL. In

3. “Architectural configurations” will, at various times in this paper, be referred
to simply as “configurations” or “topologies.”

order to inferany kind of information about an architecture, at a
minimum, interfaces of constituent components must also be
modeled. Without this information, an architectural description
becomes but a collection of (interconnected) identifiers, similar
to a “boxes and lines” diagram with no explicit underlying
semantics. Several other aspects of components, connectors, and
configurations are desirable, but not essential: their benefits have
been acknowledged and possibly demonstrated in the context of a
problem domain or a style, but their absence does not mean that a
given language is not an ADL.

Even though the suitability of a given language for modeling
software architectures is independent of whether and what kinds
of tool support it provides, an accompanying toolset will render
an ADL both more usable and useful. Conversely, the desired
manipulations of architectural models by tools may influence the
modeling features provided in an ADL. A large segment of the
ADL research community is actively studying the issue of tool
support; an effort to identify a canonical “ADL toolkit” is cur-
rently under way [17].

The ADL classification and comparison framework is depicted
in Fig. 1. It is intended to be extensible and modifiable, which is
crucial in a field that is still largely in its infancy. The remainder
of this section motivates and further elaborates on each category
of the framework.

The categories identified in the framework are orthogonal to an
ADL’s scope of applicability. As a model of a system at a high
level of abstraction, an ADL is intended (and can only be
expected) to provide apartial depiction of the system. The types
of information on which the ADL focuses may be the characteris-
tics of an application domain, a style of system composition (i.e.,
an architectural style), or a specific set of properties (e.g., distri-
bution, concurrency, safety, and so on). Regardless of the focus

ADL
Architecture Modeling Features

Components
Interface
Types
Semantics
Constraints
Evolution
Non-functional properties

Connectors
Interface
Types
Semantics
Constraints
Evolution
Non-functional properties

Architectural Configurations
Understandability
Compositionality
Refinement and traceability
Heterogeneity
Scalability
Evolution
Dynamism
Constraints
Non-functional properties

Tool Support
Active Specification
Multiple Views
Analysis
Refinement
Implementation Generation
Dynamism

Fig. 1. ADL classification and comparison framework. Essential
modeling features are in bold font.

5 of 24

and nature of the ADL, in general the desired kinds of representa-
tion, manipulation, and qualities of architectural models
described in the ADL, and identified in in Fig. 1, remain constant.

3.1.1 Modeling Components

A component in an architecture is a unit of computation or a
data store. Therefore, components are loci of computation and
state [62]. Components may be as small as a single procedure or
as large as an entire application. Each component may require its
own data or execution space, or it may share them with other
components. As already discussed, explicit componentinterfaces
are a feature required of ADLs. Additional comparison features
are those for modeling componenttypes, semantics, constraints,
evolution, and non-functional properties. Each is discussed
below.

Interface — A component’s interface is a set of interaction
points between it and the external world. The interface specifies
the services (messages, operations, and variables) a component
provides. In order to support reasoning about a component and
the architecture that includes it, ADLs may also provide facilities
for specifying component needs, i.e., services required of other
components in the architecture. An interface thus defines compu-
tational commitments a component can make and constraints on
its usage.

Types —Component types are abstractions that encapsulate
functionality into reusable blocks. A component type can be
instantiated multiple times in a single architecture or it may be
reused across architectures. Component types can be parameter-
ized, further facilitating reuse. Explicit modeling of types also
aids understandability and analyzability of an architecture in that
the properties of a type are shared by all of its instances.

Semantics —We define component semantics as a high-
level model of a component’s behavior. Such a model is needed
to perform analysis, enforce architectural constraints, and ensure
consistent mappings of architectures from one level of abstrac-
tion to another. Note that a component’s interface also allows a
certain, limited degree of reasoning about its semantics. How-
ever, the notion of semantics used in this paper refers strictly to
models of component behavior.

Constraints — A constraint is a property of or assertion
about a system or one of its parts, the violation of which will ren-
der the system unacceptable (or less desirable) to one or more
stakeholders [9]. In order to ensure adherence to intended compo-
nent uses, enforce usage boundaries, and establish dependencies
among internal parts of a component, constraints on them must
be specified.

Evolution — As architectural building blocks, components
will continuously evolve. Component evolution can be infor-
mally defined as the modification of (a subset of) a component’s
properties, e.g., interface, behavior, or implementation. ADLs
can ensure that evolution happens in a systematic manner, by
employing techniques such as subtyping of component types and
refinement of component features.

Non-Functional Properties —A component’s non-func-
tional properties (e.g., safety, security, performance, portability)
typically cannot be directly derived from the specification of its

behavior. Early specification of such properties (at the architec-
tural level) is needed to enable simulation of runtime behavior,
perform analysis, enforce constraints, map component imple-
mentations to processors, and aid in project management.

3.1.2 Modeling Connectors

Connectors are architectural building blocks used to model
interactions among components and rules that govern those inter-
actions. Unlike components, connectors may not correspond to
compilation units in an implemented system. They may be imple-
mented as separately compilable message routing devices, but
may also manifest themselves as shared variables, table entries,
buffers, instructions to a linker, dynamic data structures,
sequences of procedure calls embedded in code, initialization
parameters, client-server protocols, pipes, SQL links between a
database and an application, and so forth [15], [62]. The features
characterizing connectors are theirinterfaces, types, semantics,
constraints, evolution, and non-functional properties.4 Each is
defined and motivated below.

Interface — A connector’s interface is a set of interaction
points between the connector and the components and other con-
nectors attached to it. Since a connector does not perform any
application-specific computations, it exports as its interface those
services it expects of its attached components. Connector inter-
faces enable proper connectivity of components and their interac-
tion in an architecture and, thereby, reasoning about architectural
configurations.

Types —Connector types are abstractions that encapsulate
component communication, coordination, and mediation deci-
sions. Architecture-level interactions may be characterized by
complex protocols. Making these protocols reusable both within
and across architectures requires that ADLs model connectors as
types. This is typically done in two ways: asextensible type sys-
tems, defined in terms of interaction protocols, or as built-in,enu-
merated types, based on particular implementation mechanisms.

Semantics —Similarly to components, connector semantics
is defined as a high-level model of a connector’s behavior. Unlike
components, whose semantics express application-level function-
ality, connector semantics entail specifications of (computation-
independent) interaction protocols. ADLs may support modeling
of connector semantics in order to enable component interaction
analysis, consistent refinement of architectures across levels of
abstraction, and enforcement of interconnection and communica-
tion constraints.

Constraints — Connector constraints ensure adherence to
intended interaction protocols, establish intra-connector depen-
dencies, and enforce usage boundaries. An example of a simple
and easily enforceable constraint is a restriction on the number of
components that interact through the connector. Establishing
adherence to more complex connector constraints (e.g., minimal
throughput) may require access to information external to the
given connector (e.g., a model of the attached components’
dynamic semantics).

4. Although the comparison categories for components and connectors are
identical, they were derived and refined independently of each other.

6 of 24

Evolution — Analogously to component evolution, the evo-
lution of a connector is defined as the modification of (a subset
of) its properties, e.g., interface, semantics, or constraints on the
two. Component interactions in architectures are governed by
complex and potentially changing and expanding protocols. Fur-
thermore, both individual components and their configurations
evolve. ADLs can accommodate this evolution by modifying or
refining existing connectors with techniques such as incremental
information filtering, subtyping, and refinement.

Non-Functional Properties —A connector’s non-func-
tional properties are not entirely derivable from the specification
of its semantics. They represent (additional) requirements for
correct connector implementation. Modeling non-functional
properties of connectors enables simulation of runtime behavior,
analysis of connectors, constraint enforcement, and selection of
appropriate off-the-shelf (OTS) connectors (e.g., message buses)
and their mappings to processors.

3.1.3 Modeling Configurations

Architectural configurations, or topologies, are connected
graphs of components and connectors that describe architectural
structure. This information is needed to determine whether
appropriate components are connected, their interfaces match,
connectors enable proper communication, and their combined
semantics result in desired behavior. In concert with models of
components and connectors, descriptions of configurations
enable assessment of concurrent and distributed aspects of an
architecture, e.g., potential for deadlocks and starvation, perfor-
mance, reliability, security, and so on. Descriptions of configura-
tions also enable analyses of architectures for adherence to
design heuristics (e.g., direct communication links between com-
ponents hamper evolvability of an architecture) and architectural
style constraints (e.g., direct communication links between com-
ponents are disallowed).

Characteristic features at the level of architectural configura-
tions fall in three general categories:

• qualities of the configuration description:understandability,
compositionality, refinement and traceability, andheteroge-
neity;

• qualities of the described system:heterogeneity, scalability,
evolvability, anddynamism;

• properties of the described system:dynamism, constraints,
andnon-functional properties.5

Note that the three categories are not entirely orthogonal: hetero-
geneity and dynamism each appear in two categories. Heteroge-
neity may be manifested in multiple employed formalisms in
configuration descriptions and multiple programming languages
in system implementations. Anticipated dynamism is a system
property in that the system may be architected specifically to
accommodate the (expected) dynamic change; unanticipated
dynamism is aquality that refers to a system’s general suitability
for dynamic change.

5. The term “quality” is used in the conventional, application-independent
manner, e.g., as defined by Ghezzi and colleagues [18]. The term “property”
refers to the characteristics of an application introduced to address specific
requirements.

The differences between the two pairs of features are subtle,
particularly in the case of dynamism. While keeping the above
categorization in mind, in order to maintain the conceptual sim-
plicity of our framework and avoid confusion, we proceed by
describing individual features; we include both notions of hetero-
geneity and dynamism under single respective headings. We
motivate and, where appropriate, define the configuration fea-
tures below.

Understandable Specifications —One role of software
architecture is to serve as an early communication conduit for
different stakeholders in a project and facilitate understanding of
(families of) systems at a high level of abstraction. ADLs must
thus model structural (topological) information with simple and
understandable syntax. The structure of a system should ideally
be clear from a configuration specification alone, i.e., without
having to study component and connector specifications.

Compositionality — Compositionality, or hierarchical
composition, is a mechanism that allows architectures to describe
software systems at different levels of detail: complex structure
and behavior may be explicitly represented or they may be
abstracted away into a single component or connector. Situations
may also arise in which an entire architecture becomes a single
component in another, larger architecture. Such abstraction
mechanisms should be provided as part of an ADLs modeling
capabilities.

Refinement and Traceability —In addition to providing
architects with semantically elaborate facilities for specifying
architectures, ADLs must also enable correct and consistent
refinement of architectures into executable systems and traceabil-
ity of changes across levels of architectural refinement. This view
is supported by the prevailing argument for developing and using
ADLs: they are necessary to bridge the gap between informal,
“boxes and lines” diagrams and programming languages, which
are deemed too low-level for application design activities.

Heterogeneity —A goal of software architectures is to
facilitate development of large-scale systems, preferably with
pre-existing components and connectors of varying granularity,
possibly specified in different formal modeling languages and
implemented in different programming languages, with varying
operating system requirements, and supporting different commu-
nication protocols. It is therefore important that ADLs beopen,
i.e., that they provide facilities for architectural specification and
development with heterogeneous components and connectors.

Scalability — Architectures are intended to provide develop-
ers with abstractions needed to cope with the issues of software
complexity and size. ADLs must therefore directly support speci-
fication and development of large-scale systems that are likely to
grow further.

Evolvability — New software systems rarely provide
entirely unprecedented functionality, but are rather “variations on
a theme.” An architecture evolves toreflect andenable evolution
of a family of software systems. Since evolution (i.e., mainte-
nance) is the single costliest software development activity [18],
system evolvability becomes a key aspect of architecture-based
development. ADLs need to augment evolution support at the
level of components and connectors with features for their incre-

7 of 24

mental addition, removal, replacement, and reconnection in a
configuration.

Dynamism —Evolution, as we define it, refers to “off-line”
changes to an architecture (and the resulting system). Dynamism,
on the other hand, refers to modifying the architecture and enact-
ing those modifications in the systemwhile the system is execut-
ing. Support for dynamism is important in the case of certain
safety- and mission-critical systems, such as air traffic control,
telephone switching, and high availability public information
systems. Shutting down and restarting such systems for upgrades
may incur unacceptable delays, increased cost, and risk [52]. To
support architecture-based run-time evolution, ADLs need to
provide specific features formodeling dynamic changes and tech-
niques foreffecting them in the running system.

Constraints — Constraints that depict dependencies in a
configuration complement those specific to individual compo-
nents and connectors. Many global constraints are derived from
or directly depend upon local constraints. For example, con-
straints on valid configurations may be expressed as interaction
constraints among constituent components and connectors, which
in turn are expressed through their interfaces and protocols; per-
formance of a system described by a configuration will depend
upon the performance of each individual architectural element;
safety of an architecture is a function of the safety of its constitu-
ents.

Non-Functional Properties —Certain non-functional
properties are system-level, rather than individual component or
connector properties. Configuration-level non-functional proper-
ties are needed to select appropriate components and connectors,
perform analysis, enforce constraints, map architectural building
blocks to processors, and aid in project management.

3.1.4 Tool Support for Architectural Description

The motivation behind developing formal languages for archi-
tectural description is that their formality renders them suitable
for reasoning and manipulation by software tools. A supporting
toolset that accompanies an ADL is, strictly speaking, not a part
of the language. However, the usefulness of an ADL is directly
related to the kinds of tools it provides to support architectural
design, analysis, evolution, executable system generation, and so
forth. The importance of architectural tools is reflected in the on-
going effort by a large segment of the community to identify the
components that comprise a canonical “ADL toolkit” [17].
Although the results of this work are still preliminary, several
general categories have emerged. They reflect the kinds of tool
support commonly provided by existing architectural approaches:
active specification, multiple views, analysis, refinement, imple-
mentation generation, and dynamism. Each is discussed below.

Active Specification —ADL tools provide active specifica-
tion support by reducing the space of possible design options
based on the current state of the architecture. Such tools provide
design guidance and can significantly reduce a software archi-
tect’s cognitive load. They can be either proactive, by suggesting
courses of action or disallowing design options that may result in
undesirable design states, or reactive, by informing the architect
of such states once they are reached during design. Active speci-
fication tools can deliver their feedback intrusively, forcing the

architect to acknowledge it before continuing, or non-intrusively,
allowing the architect to view the feedback at his discretion.

Multiple Views — When defining an architecture, different
stakeholders (e.g., architects, developers, managers, customers)
may require different views of the architecture. The customers
may be satisfied with a high-level, “boxes-and-lines” description,
the developers may want detailed (formal) component and con-
nector specifications, while the managers may require a view of
the corresponding system development process. Providing the
most appropriate view to a given stakeholder and ensuring inter-
view consistency are key issues to be addressed by an ADL tool-
kit.

Analysis —Architectural descriptions are often intended to
model large, distributed, concurrent systems. The ability to evalu-
ate the properties of such systems upstream, at an architectural
level, can substantially lessen the cost of any errors. Given that
many details are abstracted away in architectures, this task may
also be easier than at source code level. Analysis of architectures
has thus been a primary focus of ADL toolset developers.

Refinement —The importance of supporting refinement of
architectures across levels of detail was briefly argued above and
more extensively by Garlan [13] and Moriconi and colleagues
[47]. Refining architectural descriptions is a complex task whose
correctness and consistency cannot always be guaranteed by for-
mal proof, but adequate tool support can give architects increased
confidence in this respect.

Implementation Generation —The ultimate goal of any
software design and modeling endeavor is to produce the execut-
able system. An elegant architectural model is of limited value
unless it can be converted into a running application. Doing so
manually may result in many problems of consistency and trace-
ability between an architecture and its implementation. It is
therefore desirable, if not imperative, for an ADL toolkit to pro-
vide tools to assist in producing source code.

Dynamism —We have argued for the need to model
dynamic changes at the level of architecture. However, an ADL’s
ability to model dynamic changes is insufficient to guarantee that
they will be applied to the executing system in a property-pre-
serving manner. Software tools are needed to analyze the modi-
fied architecture to ensure its desirable properties, correctly map
the changes expressed in terms of architectural constructs to the
implementation modules, ensure continuous execution of the
application’s vital subsystems and preservation of stateduring
the modification, and analyze and test the modified application
while it is executing.

3.2 Differentiating ADLs from Other Languages

In order to clarify whatis an ADL, it may be useful to point
out several notations that, though similar, arenot ADLs accord-
ing to our definition: high-level design notations, MILs, program-
ming languages, object-oriented (OO) modeling notations, and
formal specification languages.

The requirement to modelconfigurations explicitly distin-
guishes ADLs from some high-level design languages. Existing
languages that are sometimes referred to as ADLs can be grouped
into three categories based on how they model configurations:

8 of 24

• implicit configuration languagesmodel configurations
implicitly through interconnection information that is dis-
tributed across definitions of individual components and
connectors;

• in-line configuration languagesmodel configurations explic-
itly, but specify component interconnections, along with any
interaction protocols, “in-line;”

• explicit configuration languagesmodel both components and
connectors separately from configurations.

The first category, implicit configuration languages, are, by the
definition given in this paper,not ADLs, although they may serve
as useful tools in modeling certain aspects of architectures. Two
examples of such languages are LILEANNA and ArTek. In
LILEANNA, interconnection information is distributed among
the with clauses of individual packages, package bindings (view
construct), and compositions (make). In ArTek, there is no con-
figuration specification; instead, each connector specifies compo-
nent ports to which it is attached.

The focus onconceptual architecture and explicit treatment of
connectors as first-class entities differentiate ADLs from MILs
[55], programming languages, and OO notations and languages
(e.g., Unified Modeling Language, or UML [57], [58]). MILs
typically describe theuses relationships among modules in an
implemented system and support only one type of connection [4],
[64]. Programming languages describe a system’s implementa-
tion, whose architecture is typically implicit in subprogram defi-
nitions and calls. Explicit treatment of connectors also
distinguishes ADLs from OO languages, as demonstrated in [34].

It is important to note that there is less than a firm boundary
between ADLs and MILs. Certain ADLs, e.g., Wright and
Rapide, model components and connectors at a high level of
abstraction and do not assume or prescribe a particular relation-
ship between an architectural description and an implementation.
We refer to these languages asimplementation independent. On
the other hand, several ADLs, e.g., Weaves, UniCon, and MetaH,
require a much higher degree of fidelity of an architecture to its
implementation. Components modeled in these languages are
directly related to their implementations, so that a module inter-
connection specification may be indistinguishable from an archi-
tectural description in such a language. These areimplementation
constraining languages.

We have also recently shown that an OO language, such as
UML, can be used to model software architectures if it supports
certain extensions [41], [60]. These extensions are used to repre-
sent architectural abstractions that either differ (e.g., topological
constraints) or do not exist (e.g., connectors) in OO design.
Extending UML in such a manner is clearly useful in that it sup-
ports mapping of an architecture to a more familiar and widely
used notation, therefore facilitating broader understanding of the
architecture and enabling more extensive tool support for manip-
ulating it. However, it is unrealistic to expect that UML could be
extended to model every feature of every ADL; our initial experi-
ence indeed confirms this [60]. Moreover, although UML may
provide modeling power equivalent to or surpassing that of an
ADL, the abstractions it provides will not match an architect’s
mental model of the system as faithfully as the architect’s ADL
of choice. If the primary purpose of a language is to provide a
vehicle of expression that matches the intuitions and practices of

users, then that language should aspire to reflect those intentions
and practices [65]. We believe this to be a key issue and one that
argues against considering a notation like UML an ADL: a given
language (e.g., UML) offers a set of abstractions that an architect
uses as design tools; if certain abstractions (e.g., components and
connectors) are buried in others (e.g., classes), the architect’s job
is made more (and unnecessarily) difficult; separating compo-
nents from connectors, raising them both to visibility as top-level
abstractions, and endowing them with certain features and limita-
tions also raises them in the consciousness of the designer.

An ADL typically subsumes a formal semantic theory. That
theory is part of the ADL’s underlying framework for characteriz-
ing architectures; it influences the ADL’s suitability for modeling
particular kinds of systems (e.g., highly concurrent systems) or
particular aspects of a given system (e.g., its static properties).
Examples of formal specification theories are Statecharts [23],
partially-ordered event sets [33], communicating sequential pro-
cesses (CSP) [24], model-based formalisms (e.g., chemical
abstract machine, or CHAM [25], Z [67]), algebraic formalisms
(e.g., Obj [19]), and axiomatic formalisms (e.g., Anna [30]). Of
the above-mentioned formal notations, Z has been demonstrated
appropriate for modeling only certain aspects of architectures,
such as architectural style rules [1], [42]. Partially-ordered event
sets, CSP, Obj, and Anna have already been successfully used by
existing modeling languages (Rapide, Wright, and LILEANNA,
respectively).

Modeling capabilities of the remaining two notations, State-
charts and CHAM, are somewhat similar to those of ADLs.
Although they do not express systems in terms of components,
connectors, and configurations per se, their features may be cast
in that mold and they have indeed been referred to as examples of
ADLs [8], [25]. We discuss in the remainder of the section why it
is inappropriate to do so.

3.2.1 Statecharts

Statecharts is a modeling formalism based on finite state
machines (FSM) that provides a state encapsulation construct,
support for concurrency, and broadcast communication. To com-
pare Statecharts to an ADL, the states are viewed as components,
transitions among them as simple connectors, and their intercon-
nections as configurations. However, Statecharts does not model
architectural configurations explicitly: interconnections and
interactions among a set of concurrently executing components
are implicit in intra-component transition labels. In other words,
as was the case with LILEANNA and ArTek, the topology of an
“architecture” described as a Statechart can only be determined
by studying its constituent components. Therefore, Statecharts is
not an ADL.

There is an even deeper issue in attempting to model architec-
tures as FSMs: although it may be useful to represent component
or connector semantics with Statecharts, it is doubtful that an
adequate architectural breakdown of a system can be achieved
from a state-machine perspective. Harel [23] agrees with this
view, arguing that

one has to assume some physical and functional
description of the system, providing, say, a hierarchical
decomposition into subsystems and the functions and

9 of 24

activities they support... Statecharts can then be used to
control these internal activities... We assume that this
kind of description is given or can be produced using an
existing method.

3.2.2 Chemical Abstract Machine

In the chemical abstract machine (CHAM) approach, an archi-
tecture is modeled as an abstract machine fashioned after chemi-
cals and chemical reactions. A CHAM is specified by defining
molecules, their solutions, and transformation rules that specify
how solutions evolve. An architecture is then specified with pro-
cessing, data, and connecting elements. The interfaces of pro-
cessing and connecting elements are implied by (1) their
topology and (2) the data elements their current configuration
allows them to exchange. The topology is, in turn, implicit in a
solution and the transformation rules. Therefore, even though
CHAM can be used effectively to prove certain properties of
architectures, without additional syntactic constructs it does not
fulfill the requirements to be an ADL.

4 COMPARISON OF ADLS

This section presents a detailed comparison of existing ADLs
along the dimensions discussed in Section 3.1. We highlight rep-
resentative approaches and support our arguments with example
ADL specifications. The chosen examples are deliberately kept
simple. They are intended to give the reader a flavor of the kind
of solutions an ADL may provide for a particular problem, inde-
pendently of the ADL’s overall syntax and semantics.

Our decision to provide multiple examples instead of a single
representative example is motivated by the the inability of the
research community to identify a model problem for which all
ADLs are likely to be well suited [68]. Thus, selecting any one
candidate problem would likely draw the (justified) criticism of
focusing on the strengths of only certain languages. This point is
related to the discussion from Section 3: different ADLs focus on
different application domains, architectural styles, or aspects of
the architectures they model. This is certainly the case with the
ADLs we have studied, and which represent a large cross-section
of existing work in the area, as shown in Table 1.

4.1 ADL Support for Modeling Components

Each surveyed ADL models components. ACME, Aesop, C2,
Darwin, SADL, UniCon, and Wright share much of their vocabu-
lary and refer to them simply ascomponents; in Rapide they are
interfaces; in Weaves,tool fragments; and in MetaH,processes.

In this section, we discuss the support provided by ADLs for dif-
ferent aspects of components.

4.1.1 Interface

All surveyed ADLs support specification of component inter-
faces. They differ in the terminology and the kinds of information
they specify. For example, an interface point in SADL or Wright
is aport, and in UniCon aplayer. On the other hand, in C2 the
entire interface is provided through a single port; individual inter-
face elements aremessages. Weaves combines the two
approaches by allowing multiple componentports, each of which
can participate in the exchange of interface elements, orobjects.

ADLs typically distinguish between interface points that refer
to provided and required functionality. MetaH and Rapide make
the additional distinction between synchronous and asynchro-
nous interfaces. For example,provides and requires interface
constituents in Rapide refer to functions and specify synchronous
communication, whilein and out actions denote asynchronous
events.

Interface points are typed in a number of ADLs: ACME,
Aesop, Darwin, MetaH, SADL, and UniCon. UniCon supports a
predefined set of common player types, includingRoutineDef,
RoutineCall, GlobalDataDef, GlobalDataUse, ReadFile, Write-
File, RPCDef, andRPCCall. On the other hand, ports in C2 and
Weaves are type-indifferent in order to maximize the flexibility of
interconnection. Weaves ports perform wrapping and unwrapping
of data objects by means ofenvelopes, which hide the types of
the underlying data objects, while C2 ports are designed to han-
dle any C2 messages.

Finally, Wright and UniCon allow specification of expected
component behavior or constraints on component usage relevant
to each point of interaction. For example, UniCon allows specifi-
cation of the number of associations in which a player can be
involved. Fig. 2 depicts the constraint that theinput player of the
StreamIn type is bound to standard input and participates in
exactly one association in a given architecture.

TABLE 1
ADL SCOPE ANDAPPLICABILITY

ADL ACME Aesop C2 Darwin MetaH Rapide SADL UniCon Weaves Wright

Focus

Architectural
interchange,
predomi-
nantly at the
structural level

Specification
of architec-
tures in spe-
cific styles

Architectures
of highly-dis-
tributed,
evolvable, and
dynamic sys-
tems

Architectures
of highly-dis-
tributed sys-
tems whose
dynamism is
guided by
strict formal
underpinnings

Architec-
tures in the
guidance,
navigation,
and control
(GN&C)
domain

Modeling and
simulation of
the dynamic
behavior
described by
an architecture

Formal refine-
ment of archi-
tectures
across levels
of detail

Glue code
generation for
interconnect-
ing existing
components
using com-
mon interac-
tion protocols

Data-flow archi-
tectures, charac-
terized by high-
volume of data
and real-time
requirements
on its process-
ing

Modeling and
analysis (spe-
cifically, dead-
lock analysis)
of the dynamic
behavior of
concurrent sys-
tems

PLAYER input IS StreamIn
MAXASSOCS (1)
MINASSOCS (1)
SIGNATURE (“line”)
PORTBINDING (stdin)

END input

Fig. 2. Specification of a component player in UniCon.

10 of 24

Wright specifies the protocol of interaction at each port in CSP
[24]. In the example given in Fig. 3,DataRead is a simple input
(read only) port.6

4.1.2 Types

All of the surveyed ADLs distinguish component types from
instances. Rapide does so with the help of a separate types lan-
guage [31]. Weaves distinguishes betweensockets and tool frag-
ments that populate them. With the exception of MetaH and
UniCon, all ADLs provide extensible component type systems.
MetaH and UniCon support only a predefined, built-in set of
types. MetaH component types areprocess, macro, mode, system,
and application.7 Component types supported by UniCon are
Module, Computation, SharedData, SeqFile, Filter, Process,
SchedProcess, andGeneral.

Several ADLs (ACME, Darwin, Rapide, SADL, and Wright)
make explicit use of parameterization of component interface sig-
natures. This is typically done in the manner similar to program-
ming languages such as Ada and C++. Rapide and Wright also
allow the behavior associated with a particular type to be parame-
terized. Rapide does so by specifying event patterns, discussed
below. Wright allows parameterization of a component by its
computation, a CSP specification that defines the component’s
behavior. This allows the architect to vary the behavior of a com-
ponent in a systematic manner.

4.1.3 Semantics

All ADLs support specification of component semantics,
although to varying degrees. The ADLs’ underlying semantic
models range from expressing semantic information in compo-
nent property lists (UniCon) to the models of dynamic compo-
nent behavior (Rapide and Wright).8 Other points along this
spectrum are arbitrarily complex behavioral specifications that
are treated as uninterpreted annotations (ACME); an accompany-
ing language for modeling algorithms in the ADL’s domain
(MetaH); specification of static component semantics via invari-
ants and operation pre- and post-conditions (C2); and models of
interaction and composition properties of composite components
expressed in theπ-calculus [44] (Darwin).

Rapide introduces a unique mechanism for expressing both a
component’sbehavior and its interaction with other components:
partially ordered sets of events (posets). Rapide uses event pat-
terns to recognize posets. During poset recognition, free variables
in a pattern are bound to specific matching values in a poset.

6. In all examples, we adhere to each ADL’s presentation conventions (naming,
capitalization, highlighting, etc.).

7. As MetaH is used to specify both the software and the hardware architecture
of an application,system is a hardware construct, whileapplication pertains to
both.

8. As discussed in the preceding section, Wright uses CSP to specify a compo-
nent’scomputation.

Event patterns are used both as triggers and outputs of compo-
nent state transitions. Fig. 4 shows an example of a simple Rapide
component with a causal relationship between events: when the
Application component observes aReceive event, it generates a
Results event in response; the two events have the same string
parameter.

4.1.4 Constraints

All ADLs constrain the usage of a component by specifying its
interface as the only legal means of interaction. Formal specifica-
tion of component semantics further specifies relationships and
dependencies among internal elements of a component. Several
additional means for constraining components are common.

A number of ADLs provide stylistic invariants (Aesop, C2,
SADL, and Wright). An example stylistic invariant is C2’s
requirement that a component have exactly two communication
ports, one each on its top and bottom sides. A component can
also be constrained via attributes. Fig. 2 shows how a UniCon
component is constrained by restricting the number of associa-
tions in which its players can participate. MetaH also constrains
the implementation and usage of a component by specifying its
(non-functional) attributes, such asExecutionTime, Deadline, and
Criticality. Finally, Rapide enables specification of pattern con-
straints on event posets that are generated and observed from a
component’s interface. In the example shown in Fig. 5, the con-
straint implies that all, and only, messages taken in by the
Resource component are delivered.

4.1.5 Evolution

A number of ADLs view and model components as inherently
static. For example, MetaH and UniCon define component types
by enumeration, allowing no subtyping, and hence no evolution
support; Weaves considers tool fragment evolution outside its
scope. Several ADLs support component evolution via subtyping.
They typically support a limited notion of subtyping or rely on
the mechanisms provided by the underlying programming lan-
guage. For example, ACME supports strictly structural subtyping
with its extends feature, while Rapide evolves components via
OO inheritance. SADL allows the specification of high-level
properties that must be satisfied by subtypes: the example in Fig.

port DataRead = get DataRead→
Fig. 3. Interaction protocol for a component port in Wright:

denotes event transitions, a successfully terminating
process, non-deterministic choice, and deterministic
choice.

→

type Application is interface
extern action Request(p : params);
public action Results(p : params);

behavior
(?M in String) Receive(?M) => Results(?M);;

end Application;

Fig. 4. A Rapide component’s behavior specified with posets.

type Resource is interface
public action Receive(Msg : String);
extern action Results(Msg : String);

constraint
match

((?S in String)(Receive(?S) -> Results(?S)))^(*~);
end Resource;

Fig. 5. A pattern constraint in Rapide.

11 of 24

6 specifies thatLocal_Client is the subtype ofClient such that all
of its instances satisfy the predicateLocal.

Aesop and C2 provide more extensive component subtyping
support. Aesop enforces behavior-preserving subtyping to create
substyles of a given architectural style. An Aesop subclass must
provide strict subtyping behavior for operations that succeed, but
may also introduce additional sources of failure with respect to
its superclass. C2, on the other hand, supports multiple subtyping
relationships among components:name, interface,behavior, and
implementation [39], [42]. Different combinations of these rela-
tionships are specified using the keywordsand and not. Fig. 7
demonstrates two possible subtyping relationships:Well_1 pre-
serves (and possibly extends) the behavior of the component
Matrix, but may change its interface and implementation;
Well_2’s subtyping relationship mandates that itmust alter
Matrix’s interface:

Rapide and SADL also provide features for refining compo-
nents across levels of abstraction. This mechanism may be used
to evolve components by explicating any deferred design deci-
sions, which is somewhat similar to extending inherited behavior
in OO languages. Indeed, subtyping is simply a form of refine-
ment in a general case. This is, however, not true of Rapide and
SADL, both of which place additional constraints on refinement
maps in order to prove or demonstrate certain properties of archi-
tectures. Refinement of components and connectors in Rapide
and SADL is a byproduct of the refinement of configurations,
their true focus. Therefore, we will defer further discussion of
this issue until Section 4.3.

4.1.6 Non-Functional Properties

Despite the need for and benefits of specifying non-functional
properties, there is a notable lack of support for them in existing
ADLs. ACME, Aesop, and Weaves allow specification of arbi-
trary component properties and/or annotations. However, none of
them interprets such properties, nor do they make direct use of
them.

MetaH and UniCon provide more advanced support for model-
ing non-functional properties. They require such information to
analyze architecture for real-time schedulability (both ADLs) and
reliability and security (MetaH). Both also use source code loca-
tion attributes for implementation generation. Several representa-
tive non-functional properties in MetaH areSourceName,
SourceFile, ClockPeriod, Deadline, and Criticality. UniCon
allows specification ofPriority, Library, ImplType (source,
object, executable, data, orwhatever), andProcessor.

4.1.7 Summary of ADL Components

Overall, surveyed ADLs provide comprehensive support for
modeling components. All of them regard components as first-
class entities. Furthermore, all model interfaces and distinguish
between component types and instances. On the other hand, a
majority of the ADLs do not support evolution or non-functional
properties. It is illustrative that Aesop is the only ADL that pro-
vides at least some support for each of the six classification cate-
gories and that, of the five ADLs that support five of the
categories, C2 and Rapide do not model non-functional proper-
ties, and MetaH, UniCon, and Weaves do not support evolution.
Every ADL supports or allows at least four of the six categories.
A more complete summary of this section is given in Table 2.

4.2 ADL Support for Modeling Connectors

ADLs model connectors in various forms and under various
names. For example, ACME, Aesop, C2, SADL, UniCon, and
Wright model connectors explicitly and refer to them asconnec-
tors. Weaves also models connectors explicitly, but refers to them
astransport services. Rapide and MetaHconnectionsand Darwin
bindingsare modeled in-line, and cannot be named, subtyped, or
reused (i.e., connectors are not first-class entities). Darwin and
Rapide do allow abstracting away complex connection behaviors
into “connector components.” In this section, we compare exist-
ing ADLs with respect to the support they provide for different
aspects of connectors.

4.2.1 Interface

In general, only the ADLs that model connectors as first-class
entities support explicit specification of connector interfaces.
Most such ADLs model component and connector interfaces in
the same manner, but refer to them differently. Thus, connector
interface points in ACME, Aesop, UniCon, and Wright areroles,
which are named and typed. Explicit connection of component
ports (players in UniCon) and connector roles is required in an
architectural configuration. Wright supports CSP specifications
of each role’s interaction protocol in the same manner as port
protocols (see Fig. 3). This allows compatibility analysis of con-
nected ports and roles.

In UniCon, each role may include optional attributes, such as
the type of players that can serve in the role and minimum and
maximum number of connections. UniCon supports only a pre-
defined set of role types, includingSource, Sink, Reader, Readee,
Writer, Writee, Definer, andCaller. An example UniCon role is
shown in Fig. 8. It belongs to thePipe connector type and is con-
strained to be connected to at most a single player. Note that,
unlike the player shown in Fig. 2, which must participate in
exactly one association, this role does not have to be connected to
a player.

Local_Client : TYPE = { c : Client | Local(c) }

Fig. 6. A subtype specification in SADL.

component Well_1 is subtype Matrix (beh)
component Well_2 is subtype Matrix (beh \and \not int)

Fig. 7. Specification of component subtypes in C2.

ROLE output IS Source
MAXCONNS (1)

END input

Fig. 8. Specification of a connector role in UniCon.

12 of 24

SADL, C2, and Weaves model connector interfaces differently
from component interfaces. A SADL connector is defined as part
of the design vocabulary for a particular architectural style. The
specification of the connector in an architecture only specifies the
type of data the connector supports (e.g., the connector declared
in Fig. 9a expects a token sequence). Other information about the

connector, such as its arity and the constraints on its usage, is
given in the definition of its style (Fig. 9b).

The interfaces of C2 and Weaves connectors are generic: the
connectors are indifferent to the types of data they handle; their
main task is to mediate and coordinate the communication among
components. Additionally, a C2 connector can support an arbi-
trary number of components. In C2, this feature is referred to as
context-reflection: the interface of a connector is determined by
(potentially dynamic) interfaces of components that communi-
cate through it, as depicted in Fig. 10.

4.2.2 Types

Only ADLs that model connectors as first-class entities distin-
guish connector types from instances. This excludes Darwin,
MetaH, and Rapide. Although MetaH does not support connector
types, it does define three broad categories of connections:port
connections, which connect anout port of one component to an
in port of another;event connections, which connect outgoing
events to incoming events (event-to-event) or to their recipient
components (event-to-process and event-to-mode); andequiva-

TABLE 2
ADL SUPPORT FORMODELING COMPONENTS

Characteristics Interface Types Semantics Constraints Evolution
Non-Functional

Properties

ACME
Component;
implementation
independent

interface points are
ports

extensible type sys-
tem; parameterization
enabled with tem-
plates

no support; can
use other ADLs’
semantic models
in property lists

via interfaces only structural subtyp-
ing via the
extends feature

allows any attribute
in property lists, but
does not operate on
them

Aesop
Component;
implementation
independent

interface points are
input andoutput
ports

extensible type system (optional) style-
specific languages
for specifying
semantics

via interfaces and seman-
tics; stylistic invariants

behavior-preserv-
ing subtyping

allows association of
arbitrary text with
components

C2

Component;
implementation
independent

interface exported
through top and bot-
tomports; interface
elements arepro-
vided andrequired

extensible type system component invari-
ants and operation
pre- and postcon-
ditions in 1st order
logic

via interfaces and seman-
tics; stylistic invariants

heterogeneous
subtyping

none

Darwin
Component;
implementation
independent;

interface points are
services (provided
andrequired)

extensible type sys-
tem; supports parame-
terization

π-calculus via interfaces and semantics none none

MetaH

Process; imple-
mentation con-
straining

interface points are
ports

Predefined, enumer-
ated set of types

ControlH for mod-
eling algorithms in
the GN&C
domain; imple-
mentation seman-
tics via paths

via interfaces and seman-
tics; modes; non-functional
attributes

none attributes needed
for real-time schedu-
lability, reliability,
and security analysis

Rapide
Interface; imple-
mentation inde-
pendent

interface points are
constituents (pro-
vides, requires,
action, andservice)

extensible type sys-
tem; contains a types
sublanguage; sup-
ports parameterization

partially ordered
event sets (posets)

via interfaces and seman-
tics; algebraic constraints on
component state; pattern
constraints on event posets

inheritance
(structural sub-
typing)

none

SADL

Component;
implementation
independent;

interface points are
input and output
ports (iportsand
oports)

extensible type sys-
tem; allows parame-
terization of
component signatures

none via interfaces; stylistic
invariants

subtyping by
constraining
supertypes;
refinement via
pattern maps

requires component
modification (see
Section 4.3.9)

UniCon
Component;
implementation
constraining

interface points are
players

predefined, enumer-
ated set of types

event traces in
property lists

via interfaces and seman-
tics; attributes; restrictions
on players that can be pro-
vided by component types

none attributes for sched-
ulability analysis

Weaves
Tool fragments;
implementation
constraining

interface points are
read andwrite ports;
interface elements
areobjects

extensible type sys-
tem; types are compo-
nentsockets

partial ordering
over input and
output objects

via interface and semantics none allows association of
arbitrary, uninter-
preted annotations
with components

Wright
Component;
implementation
independent;

interface points are
ports; port interac-
tion semantics speci-
fied in CSP

extensible type sys-
tem; parameterizable
number of ports and
computation

not the focus;
allowed in CSP

protocols of interaction for
each port in CSP; stylistic
invariants

via different
parameter instan-
tiations

none

Features

ADL

(a)
CONNECTORS

ch : DF_Chanl <SEQ(token)>
CONFIGURATION

tok_flow : CONNECTION = Connects(ch, oport, iport)

(b)
DF_Chanl : TYPE <= CONNECTOR
Connects : Predicate(3)
connects_argtype_1 : CONSTRAINT =

(/\ x)(/\ y)(/\ z) [Connects(x,y,z) => DF_Chanl(x)]
connects_argtype_2 : CONSTRAINT =

(/\ x)(/\ y)(/\ z) [Connects(x,y,z) => Outport(y)]
connects_argtype_3 : CONSTRAINT =

(/\ x)(/\ y)(/\ z) [Connects(x,y,z) => Inport(z)]

Fig. 9. SADL connector interfaces. (a) Definition and instantiation
of a connector in the specification of a SADL architecture. (b)
Specification of the connector’s type in the definition of the
dataflow style; all connectors of the DF_Chanl type will support
interactions between two components.

13 of 24

lence connections, which specify objects that are shared among
components.

ACME, Aesop, C2, SADL, and Wright base connector types
on interaction protocols. UniCon, on the other hand, only allows
connectors of prespecified enumerated types:Pipe, FileIO, Pro-
cedureCall, DataAccess, PLBundler, RemoteProcCall, and
RTScheduler. ACME and SADL also provide parameterization
facilities that enable flexible specification of connector signatures
and of constraints on connector semantics. Similarly to its com-
ponents, Wright allows a connector to be parameterized by the
specification of its behavior (glue).

4.2.3 Semantics

It is interesting to note that ADLs that do not model connectors
as first-class objects, e.g., Rapide, may model connector seman-
tics, while languages that do model connectors explicitly, such as
ACME, do not always provide means for defining their seman-
tics. ADLs tend to use a single mechanism for specifying the
semantics of both components and connectors. For example,
Rapide uses posets to describe communication patterns among its
components; Wright models connectorglue and event trace spec-
ifications with CSP, as shown in Fig. 11; and UniCon allows
specification of semantic information for connectors in property
lists (e.g., a real-time scheduling algorithm or path traces through
real-time code). Additionally, connector semantics in UniCon are
implicit in their (predefined) connector types. For example,
declaring a connector to be apipe implies certain functional
properties.

Several ADLs use a different semantic model for their connec-
tors than for components. For example, as demonstrated in Fig. 9,
SADL provides a constraint language for specifying style-spe-
cific connector semantics. C2 models a connector’s message fil-
tering policy:message_sink, no_filtering, message_filtering, and
prioritized. Finally, Weaves employs a set of naming conventions
that imply its transport services’ semantics. For example, a sin-
gle-writer, single-reader queue transport service is named
Queue_1_1.

4.2.4 Constraints

With the exception of C2 and Weaves, whose connector inter-
faces are a function of their attached components (see
Section 4.2.1), ADLs that model connectors as first-class objects
constrain their usage via interfaces. None of the ADLs that spec-
ify connections in-line (Darwin, MetaH, and Rapide) place any

such constraints on them. Implementation and usage of connec-
tors is further constrained in those ADLs that model connector
semantics.

Aesop, C2, SADL, and Wright also impose stylistic invariants,
such as C2’s restriction that each connector port may only be
attached to a single other port. UniCon restricts the number of
component players attached to a connector role by using theMin-
Conns andMaxConns attributes. Additionally, the types of play-
ers that can serve in a given role are constrained in UniCon via
theAccept attribute and in Wright by specifying interaction pro-
tocols for the role (see Fig. 11). For example, theoutput UniCon
role from Fig. 8 can be constrained to accept theStreamIn player
of theFilter component type (see Fig. 2) as follows:

4.2.5 Evolution

ADLs that do not model connectors as first-class objects (Dar-
win, MetaH, and Rapide) also provide no facilities for their evo-
lution. Others focus on configuration-level evolution (Weaves) or
provide a predefined set of connector types with no language fea-
tures for evolution support (UniCon).

Several ADLs employ identical mechanisms for connector and
component evolution: ACME supports structural connector sub-
typing, Aesop supports behavior preserving subtyping, and
SADL supports subtyping of connectors and their refinements
across styles and levels of abstraction. C2 connectors are inher-
ently evolvable because of their context-reflective interfaces; C2
connectors also evolve by altering their filtering policies. Finally,
Wright supports connector evolution via parameterization,
where, e.g., the same connector can be instantiated with a differ-
entglue.

4.2.6 Non-Functional Properties

UniCon is the lone ADL that supports explicit specification of
non-functional connector properties, using such information to
analyze an architecture for real-time schedulability. ItsSchedPro-
cess connector has anAlgorithm attribute. If the value ofAlgo-
rithm is set to RateMonotonic, UniCon uses trace, period,

Conn1Conn1Conn1

C1

Fig. 10. C2 connectors have context reflective interfaces. Each C2 connector is capable of supporting arbitrary addition, removal, and
reconnection of any number of C2 components. (a) Software architect selects a set of components and a connector from a design
palette. The connector has no communication ports, since no components are attached to it. (b-d) As components are attached to the
connector to form an architecture, the connector creates new communication ports to support component intercommunication.

C2 C3 C1 C1

C2 C2

C3C1

Conn1

(a) (b) (c) (d)

ROLE output IS Source
MAXCONNS (1)
ACCEPT (Filter.StreamIn)

END input

Fig. 11. Constraining a UniCon connector role to accept a
specific component player.

14 of 24

execution time, and priority information for schedulability analy-
sis. As with their components, ACME, Aesop, and Weaves allow
specification of arbitrary, but uninterpreted connector annota-
tions.

4.2.7 Summary of ADL Connectors

The support provided by the ADLs for modeling connectors is
considerably less extensive than for components. Three ADLs
(Darwin, MetaH, and Rapide) do not regard connectors as first-
class entities, but rather model them in-line. Their connectors are
always specified as instances and cannot be manipulated during
design or reused in the future. Overall, their support for connec-
tors is negligible, as can be observed in Table 3.

All ADLs that model connectors explicitly also model their
interfaces and distinguish connector types from instances. It is
interesting to note that, as in the case of components, support for
evolution and non-functional properties is rare, and that Aesop is
again the only ADL that provides at least some support for each
classification category. A more complete summary of this section
is given in Table 3.

4.3 ADL Support for Modeling Configurations

Explicit architectural configuration facilitates communication
among a system’s many stakeholders, who are likely to have var-
ious levels of technical expertise and familiarity with the problem
at hand. This is accomplished by abstracting away the details of
individual components and connectors and representing the sys-
tem’s structure at a high level. In this section, we discuss the key
aspects of explicit configurations and compare surveyed ADLs
with respect to them.

4.3.1 Understandable Specifications

Configuration descriptions inin-line configuration ADLs (e.g.,
Rapide) tend to be encumbered with connector details. On the
other hand,explicit configuration ADLs (e.g., Wright) have the
best potential to facilitate understandability of architectural struc-
ture. Clearly, whether this potential is realized or not will also
depend on the particular ADL’s syntax. For example, UniCon
falls in the latter category, but it allows the connections between
players and roles to appear in any order, possibly distributed

TABLE 3
ADL SUPPORT FORMODELING CONNECTORS

Characteristics Interface Types Semantics Constraints Evolution
Non-Functional

Properties

ACME
Connector; explicit interface points are

roles
extensible type sys-
tem, based on proto-
cols; parameterization
via templates

no support; can
use other ADLs’
semantic models
in property lists

via interfaces and
structural for type
instances

structural sub-
typing via the
extends feature

allows any
attribute in prop-
erty lists, but does
not operate on them

Aesop
Connector; explicit interface points are

roles
extensible type sys-
tem, based on proto-
cols

(optional) seman-
tics specified using
Wright

via interfaces and
semantics; stylistic
invariants

behavior-pre-
serving subtyp-
ing

allows association
of arbitrary text
with connectors

C2

Connector; explicit interface with each
component via a sep-
arateport; interface
elements arepro-
vided andrequired

extensible type sys-
tem, based on proto-
cols

partial semantics
specified via mes-
sage filters

via semantics; stylis-
tic invariants (each
port participates in
one link only)

context-reflec-
tive interfaces;
evolvable fil-
tering mecha-
nisms

none

Darwin
Binding; in-line; no
explicit modeling of
component interactions

none; allows “con-
nection components”

none none none none none

MetaH
Connection; in-line;
allows connections to be
optionally named

none none; supports three
general classes of con-
nections: port, event,
and equivalence

none none none none

Rapide
Connection; in-line;
complex reusable con-
nectors only via “connec-
tion components”

none; allows “con-
nection components”

none posets; condi-
tional connections

none none none

SADL
Connector; explicit connector signature

specifies the sup-
ported data types

extensible type sys-
tem; parameterized
signatures and con-
straints

axioms in the con-
straint language

via interfaces; stylis-
tic invariants

subtyping;
connector
refinement via
pattern maps

requires connector
modification (see
Section 4.3.9)

UniCon

Connector; explicit interface points are
roles

predefined, enumer-
ated set of types

implicit in connec-
tor’s type; seman-
tic information can
be given in prop-
erty lists

via interfaces;
restricts the type of
players that can be
used in a given role

none attributes for
schedulability anal-
ysis

Weaves

Transport services;
explicit

interface points are
the encapsulating
socketpads

extensible type sys-
tem; types are connec-
tor sockets

via naming con-
ventions

via interface none allows association
of arbitrary, unin-
terpreted annota-
tions with
transport services

Wright

Connector; explicit interface points are
roles; role interac-
tion semantics speci-
fied in CSP

extensible type sys-
tem, based on proto-
cols; parameterizable
number of roles and
glue

connectorglue
semantics in CSP

via interfaces and
semantics; protocols
of interaction for
each role in CSP;
stylistic invariants

via different
parameter
instantiations

none

Features

ADL

15 of 24

among individual component and connector instantiations, as
shown in Fig. 12.

Several languages provide a graphical notation as another
means of achieving understandability. An example of an architec-
ture modeled using C2’s graphical notation was shown in Fig. 10.
A graphical architectural description may actually hinder under-
standing unless there is a precise relationship between it and the
underlying model, i.e., unless the textual and graphical descrip-
tions are interchangeable. Languages like C2, Darwin, and Uni-
Con support such “semantically sound” graphical notations,
while ACME, SADL, and Wright do not.9

4.3.2 Compositionality

Most ADLs provide explicit features to support hierarchical
composition of components, where the syntax for specifying
composite components typically resembles that for specifying
configurations. Wright allows both composite components and
connectors: the computation (glue) of a composite component
(connector) is represented by an architectural description, rather
than in CSP. It is interesting to note that Darwin and UniCon do
not have explicit constructs for modeling architectures. Instead,
they both model architectures as composite components. The
statement sequence shown in Fig. 12 occurs inside the specifica-
tion of a UniCon composite component. An example of a Darwin
component illustrating its support for compositionality is shown
in Fig. 13.

4.3.3 Refinement and Traceability

Architectural refinement and traceability of architectural deci-
sions, properties, and relationships across refinements is still very
much an open research area. Support for them in existing ADLs
is limited. Several ADLs enable system generation directly from
an architectural specification. These are typically theimplemen-
tation constraining languages (see Section 3), in which a source
file corresponds to each architectural element. There are several
problems with this approach to refining an architecture. Prima-
rily, there is an assumption that the relationship between elements
of an architectural description and those of the resulting execut-
able system will be 1-to-1. This may be unnecessary, and even
unreasonable, as architectures describe systems at a higher level
of abstraction than source code modules. There is also no guaran-

9. Note that a graphical specification of an architecture may not contain all the
information in its textual counterpart (e.g., formal component and connector spec-
ifications), and vice versa (e.g., graphical layout information). Additional support
is needed to make the two truly interchangeable (see Section 4.4.2).

tee that the specified source modules will correctly implement the
desired behavior. Finally, even if the specified modules currently
implement the needed behavior correctly, this approach provides
no means of ensuring that future changes to those modules are
traced back to the architecture and vice versa.

SADL and Rapide support refinement and traceability more
extensively. They provide maps for refining architectures across
different levels of abstraction. SADL uses its maps (see Fig. 14)
to prove the correctness of architectural refinements, while
Rapide generates comparative simulations of architectures at dif-
ferent levels. Both languages thus provide the means for tracing
design decisions and changes from one level of architectural
specification (or implementation) to another. They enforce differ-
ent refinement rules, however: SADL’s stringent correctness-pre-
serving criterion ensures that all decisions made at a given level
are maintained at all subsequent levels, but disallows new deci-
sions to be introduced; Rapide’s maps allow new decisions, but
may also eliminate high-level behaviors at the lower levels. Gar-
lan has recently argued for a marriage of the two approaches [13].

4.3.4 Heterogeneity

No ADL provides explicit support for multiple formal specifi-
cation languages. Of those ADLs that support implementation of
architectures, several are also tightly tied to a particular program-

USES p1 PROTOCOL Unix-pipe
USES sorter INTERFACE Sort-filter
CONNECT sorter.output TO p1.source
USES p2 PROTOCOL Unix-pipe
USES printer INTERFACE Print-filter
CONNECT sorter.input TO p2.sink

Fig. 12. Configuration specification in UniCon. The two
connections are separated by component and connector
instantiations. All instantiations in this figure (preceded by the
USES keyword) are trivial; UniCon also allows specification of
component and connector instance attributes, which would
further obscure the structure of this configuration.

component Composite {
provide provserv;
require reqserv;
inst

C1 : CompType1;
C2 : CompType2;

bind
provserv -- C1.pserv;
C2.rserv -- reqserv;

}

Fig. 13. Top: a Darwin composite component. Bottom: graphical
view of the component. Definitions of basic components C1 and
C2, which themselves may be composite, are omitted for
simplicity.

Composite

C1

C2

pserv

rserv

provserv

reqserv

arch_map MAPPING FROM arch_L1 TO arch_L2
BEGIN

comp --> (new_comp)
conn --> (new_comp!subcomp)
port --> ()
. . .

Fig. 14. A refinement mapping declared in SADL. Level 1
architecture’s component comp is mapped to Level 2
architecture’s new_comp. Level 1 connector conn is implemented
by new_comp’s subcomponent subcomp. Level 1 port has been
eliminated from the Level 2 architecture; SADL ensures that the
functionality associated with the port is provided elsewhere in
arch_L2.

16 of 24

ming language. For example, Aesop and Darwin only support
development with components implemented in C++, while
MetaH is restricted to Ada and UniCon to C. On the other hand,
C2 currently supports development in C++, Ada, and Java, while
Weaves supports interconnection of tool fragments implemented
in C, C++, Objective C, and Fortran.

Several ADLs place restrictions that limit the number and
kinds of components and connectors they can support. For exam-
ple, MetaH requires each component to include a loop with a call
to the predeclared procedureKERNEL.AWAIT_DISPATCHto periodi-
cally dispatch a process. Any existing components have to be
modified to include this construct before they can be used in a
MetaH architecture. Similarly, UniCon allows certain types of
components and connectors (e.g., pipes, filters and sequential
files), but requires wrappers for others (e.g., spreadsheets, con-
straint solvers, or relational databases).

Finally, another aspect of heterogeneity is the granularity of
components. Most surveyed ADLs support modeling of both fine
and coarse-grain components. At one extreme are components
that describe a single operation, such ascomputations in UniCon
or procedures in MetaH, while the other extreme can be achieved
by hierarchical composition, discussed in Section 4.3.2.

4.3.5 Scalability

We consider the impact of scaling an architecture along two
general dimensions: adding elements to the architecture’s interior
(Fig. 15a) and adding them along the architecture’s boundaries
(Fig. 15b). To support the former, ADLs can, minimally, employ
compositionality features, discussed in Section 4.3.2: the original
architecture is treated as a single, composite component, which is
then attached to new components and connectors. Objectively
evaluating an ADLs ability to support the latter is more difficult,
but certain heuristics can be of help.

It is generally easier to expand architectures described in
explicit configuration ADLs than in-line configuration ADLs:
connectors in the latter are described solely in terms of the com-
ponents they connect and adding new components may require
modifications to existing connector instances. Additionally,
ADLs that allow a variable number of components to be attached
to a single connector are better suited to scaling up than those that
specify the exact number of components a connector can service.

For example, ACME and Aesop could not handle the extension to
the architecture shown in Fig. 15a without redefiningConn1 and
Conn2, while C2 and UniCon can.

To properly evaluate an ADL’s support for scalability, these
heuristics should be accompanied by other criteria. The ultimate
determinant of scalability support is the ability of developers to
implement and/or analyze large systems based on the architec-
tural descriptions given in an ADL. For example, as anin-line
configuration language, Rapide has been highlighted as an ADL
whose features may hamper scalability, yet it has been used to
specify architectures of several large, real world systems. Several
other ADLs have been applied to large-scale examples:

• Wright was used to model and analyze theRuntime Infra-
structure (RTI) of the Department of DefenseHigh-Level
Architecture for Simulations[5], whose original specification
was over 100 pages long.

• SADL ensured the consistency between the reference archi-
tecture and the implementation of a power-control system
used by the Tokyo Electric Power Company, implemented in
200,000 Fortran 77 lines of code (LOC).

• C2 has been used in the specification and implementation of
its supporting environment, consisting of a number of large
custom-built and OTS components [42], [52]. The custom-
built components comprise over 100,000 Java LOC; the OTS
components comprise several million LOC.

• Weaves has been used in satellite telemetry processing appli-
cations, whose size has ranged between 100,000 and over
1,000,000 LOC.

• A representative example of Rapide’s use is the X/Open Dis-
tributed Transaction Processing Industry Standard, whose
documentation is over 400 pages long. X/Open’s reference
architecture and subsequent extensions have been success-
fully specified and simulated in Rapide [31].

4.3.6 Evolvability

Evolvability of an architectural configuration can be viewed
from two different perspectives. One is its ability to accommo-
date addition of new components in the manner depicted in Fig.
15. The issues inherent in doing so were discussed in the preced-
ing subsection. Another view of evolvability is an ADL’s toler-
ance and/or support for incomplete architectural descriptions.
Incomplete architectures are common during design, as some
decisions are deferred and others have not yet become relevant. It
would therefore be advantageous for an ADL to allow incomplete
descriptions. However, most existing ADLs and their supporting
toolsets have been built around the notion that precisely these
kinds of situations must be prevented. For example, Darwin,
MetaH, Rapide, and UniCon compilers, constraint checkers, and
runtime systems have been constructed to raise exceptions if such
situation arise. In this case, an ADL, such as Wright, which
focuses its analyses on information local to a single connector is
better suited to accommodate expansion of the architecture than,
e.g., SADL, which is very rigorous in its refinement ofentire
architectures.

Another aspect of evolution is support for families of applica-
tions. One way in which all ADLs support families is by separat-
ing component and connector types from instances. For example,

Comp1

Comp4

Comp3

Conn1

Conn2

Conn3

(a)

(b)
Comp6

Comp5Comp2

Fig. 15. An existing architecture is scaled up: (a) by adding new
components/connectors to its interior and (b) by expanding it
“outward”. C2’s graphical notation is used for illustration.

17 of 24

Weaves supports specification of architecturalframeworks, which
are populated with sockets, rather than actual tool fragments and
transport services. Each instantiation of an architecture can then
be considered a member of the same family. This is a limited
notion of family, as it does not allow the architecture itself to be
modified. Furthermore, the family to which an application
belongs is implicit in its architecture.

ACME is the only surveyed language that specifies architec-
tural families explicitly, as first-class language constructs, and
supports their evolution. The component and connector types
declared in a family provide a design vocabulary for all systems
that are declared as members of that family. The example given in
Fig. 16 shows the declaration of a simple ACME family and its
evolution.

4.3.7 Dynamism

The majority of existing ADLs view configurations statically.
The exceptions are C2, Darwin, Rapide, and Weaves. Darwin and
Rapide support onlyconstrained dynamic manipulation of archi-
tectures, where all runtime changes must be known a priori [51],
[52]. Darwin allows runtime replication of components via
dynamic instantiation, as well as deletion and rebinding of com-
ponents by interpreting Darwin scripts. An example of dynamic
instantiation in Darwin is given in Fig. 17: invoking the service
create_inst with a data parameter results in a new instance of
componentcomp to whichdata is passed.

Rapide supports conditional configuration: itswhere clause
enables architectural rewiring at runtime, using thelink and
unlink operators. Recently, Wright has adopted a similar
approach to dynamic architecture changes: it distinguishes
between communication and control events, where the control
events are used to specify conditions under which dynamic
changes are allowed [3]. The reconfiguration actions that are trig-
gered in response to control events arenew, del, attach, and
detach.

C2 and Weaves support dynamic manipulation without any
restrictions on the types of permitted changes. Instead, arbitrary
modifications are allowed in principle; their consistency is
ensured at system runtime. C2’s architecture modification
(sub)language (AML) specifies a set of operations for insertion,
removal, and rewiring of elements in an architecture at runtime:
addComponent, removeComponent, weld, andunweld [38], [52].
For example, the extension to the architecture depicted in Fig.
15a is specified in C2’s AML as shown in Fig. 18. Weaves pro-
vides similar support by exporting an application programmable
interface (API) to a model of a weave.

4.3.8 Constraints

Most ADLs enforce built-in constraints on what they consider
to be valid configurations. For example, UniCon always requires
a connector role to be attached to a component player, while Dar-
win only allows bindings between provided and required ser-
vices. On the other hand, several ADLs provide facilities for
specifying arbitrary global constraints. For example, Rapide’s
timed poset language [33] can be used to constrain configurations
in the same manner as components (see Fig. 5). Similarly, as with
individual components, MetaH explicitly constrains configura-
tions with non-functional attributes. Refinement maps in SADL
provide constraints on valid refinements of a configuration (see
Section 4.3.3). Finally, Wright allows specification of structural
invariants corresponding to different architectural styles. An
example Wright style constraint is given in Fig. 19.

4.3.9 Non-Functional Properties

All ADLs that support specification of non-functional proper-
ties of components and connectors also support hierarchical com-
position. Hence, they can specify such properties on architectures
by treating them as composite components. MetaH and Rapide
also support direct modeling of non-functional properties of
architectures: MetaH allows specification of properties such as
the processor on which the system will execute, while Rapide
allows modeling of timing information in its constraint language.
SADL has been used to model security in a software architecture
by adopting a different approach: instead of providing security

Family fam = {
Component Type comp1 = { Port p1; }
Component Type comp2 = { Port p2; }
Connector Type conn1 = { Roles (r1,r2); }

}

Family sub_fam extends fam with {
Component Type sub_comp1 extends comp1 with {

Port p1 = { Property attach : int <<default = 1>>; }
}
Component Type comp3 = { ... }

}

Fig. 16. Declaration of a family of architectures, fam, and its
subfamily, sub_fam, in ACME. fam is evolved into sub_fam by
adding a new component and a property to one of famcomponent
ports.

component composite {
provide create_inst< dyn data>;
bind

create_inst -- dyn comp;
}

Fig. 17. Dynamic component instantiation in Darwin.

Sample_Arch.addComponent(Comp5);
Sample_Arch.weld(Conn1, Comp5);
Sample_Arch.weld(Comp5, Conn2);
Comp5.start();

Fig. 18. Dynamic insertion of a component into a C2 architecture
Sample_Arch. The start command informs the C2 implementation
infrastructure (see Section 4.4.5) to start executing Comp5.

Style Pipe-Filter
. . .
Constraints

c : Connectors Type(c) = Pipe
c : Components; p : Port | p Ports(c)
Type(p) = DataInput Type(p) = DataOutput

∀ •∧ ∀ ∈ •∨

Fig. 19. The pipe-and-filter style declared in Wright. The
constraint on the style specifies that all connectors are pipes and
that all component ports are either data input or data output ports.

18 of 24

modeling features in SADL, the “original” architecture is modi-
fied by adding the necessary component and connector parame-
ters and architectural constraints [48]. It is unclear whether this
approach is applicable to other non-functional properties or how
simple the needed modifications are in a general case.

4.3.10Summary of ADL Configurations

It is at the level of configurations that the foci of some ADLs
can be more easily noticed. For example, SADL’s particular con-
tribution is in architectural refinement, while Darwin mostly
focuses on system compositionality and dynamism. No single
ADL satisfies all of the classification criteria, although Rapide
and Weaves come close. Coverage of several criteria is sparse
across ADLs: refinement and traceability, evolution, dynamism,
and non-functional properties. These are good indicators of
where future research should be directed. On the other hand,
most ADLs allow or also provide explicit support for understand-
ability, compositionality, and heterogeneity. A more complete
summary of this section is given in Table 4.

4.4 Tool Support for ADLs

The need for tool support in architectures is well recognized.
However, there is a definite gap between what the research com-
munity identifies as desirable and the state of the practice. While
every surveyed ADL provides some tool support, with the excep-
tion of C2 and Rapide, they tend to focus on a single area of
interest, such as analysis (e.g., Wright), refinement (e.g., SADL),
or dynamism (e.g., Weaves). Furthermore, within these areas,
ADLs tend to direct their attention to a particular technique (e.g.,
Wright’s analysis for deadlocks), leaving other facets unexplored.
This is the very reason ACME has been proposed as an architec-
ture interchange language: to enable interaction and cooperation
among different ADLs’ toolsets and thus fill in these gaps. This
section surveys the tools provided by the different languages,
attempting to highlight the biggest shortcomings.

4.4.1 Active Specification

Only a handful of existing ADLs provide tools that actively
support specification of architectures. In general, such tools can
be proactive or reactive. Proactive specification tools act in a pro-
scriptive manner, similar to syntax-directed editors for program-
ming languages: they limit the available design decisions based
on the current state of architectural design. For example, such
tools may prevent selection of components whose interfaces do
not match those currently in the architecture or disallow invoca-
tion of analysis tools on incomplete architectures.

UniCon’s graphical editor operates in this manner. It invokes
UniCon’s language processing facilities toprevent errors during
design, rather than correct them after the fact. Furthermore, the
editor limits the kinds of players and roles that can be assigned to
different types of components and connectors, respectively. Simi-
larly, C2’s DRADEL development environment proactively guides
the “architecting” process by disallowing certain operations (e.g.,
architectural type checking) before others are completed (e.g.,
topological constraint checking) [42]. Darwin’sSoftware Archi-
tect’s Assistant [50] is another example of a proactive specifica-

tion tool. The Assistant automatically adds services (i.e.,
interface points) of appropriate types to components that are
bound together. It also maintains the consistency of data types of
connected ports: changing one port’s type is automatically propa-
gated to all ports which are bound to it.

Reactive specification tools detectexisting errors. They may
either only inform the architect of the error (non-intrusive) or
also force him to correct it before moving on (intrusive). In the
former case, once an inconsistency is detected, the tool informs
the architect, but allows him to remedy the problem as he sees fit
or ignore it altogether. C2’sDRADEL environment includes a type
checker that provides non-intrusive support: the architect can
proceed to the implementation generation phase even in the pres-
ence of type mismatches. In the latter case, the architect is forced
to remedy the current problem before moving on. Certain fea-
tures of MetaH’s graphical editor can be characterized as intru-
sive: the MetaH editor gives the architect full freedom to
manipulate the architecture until theApply button is depressed,
after which any errors must be rectified before the architect may
continue with the design.

4.4.2 Multiple Views

Most ADLs support at least two views of an architecture—tex-
tual and graphical—and provide automated support for alternat-
ing between them. Aesop, MetaH, UniCon, and Weaves also
distinguish different types of components and connectors iconi-
cally and allow both top-level and detailed views of composite
elements.

Support for other views is sparse. C2’sArgo design environ-
ment provides a view of the architecture-centered development
process [59]. Darwin’sSoftware Architect’s Assistant provides a
hierarchical view of the architecture which shows all the compo-
nent types and the “include” relationships among them in a tree
structure. Rapide and C2 allow visualization of an architecture’s
execution behavior by building an executable simulation of the
architecture and providing tools for viewing and filtering events
generated by the simulation. In particular, Rapide uses itsSimula-
tor tool to build the simulation and itsAnimation Tools to animate
its execution. Rapide also providesPoset Browser, a tool that
allows viewing events generated by the simulation. Weaves
adopts a similar approach: it allows insertion of low-overhead
observers into a weave to support real-time execution animation.

4.4.3 Analysis

The types of analyses for which an ADL is well suited depend
on its underlying semantic model and, to a lesser extent, its spec-
ification features. For example, Wright uses CSP to analyze indi-
vidual connectors and components attached to them for
deadlocks; Aesop and C2 ensure style-specific topological con-
straints and type conformance among architectural elements;
MetaH and UniCon support schedulability analysis by specifying
non-functional properties, such as criticality and priority; finally,
SADL can establish relative correctness of two architectures with
respect to a refinement map.

Another set of analysis techniques involves simulation of the
behavior described in an architecture. Examples are Rapide’s,

19 of 24

C2’s, and Weaves’ event monitoring and filtering tools. Similarly,
Darwin allows instantiation of parameters and dynamic compo-
nents to enact “what if” scenarios. A related technique, com-
monly employed in Weaves, is to insert into the architecture a
“listener” component whose only task is to analyze the data it
receives from adjacent components.

Language parsers and compilers are another kind of analysis
tools. Parsers analyze architectures for syntactic correctness,
while compilers establish semantic correctness. All of the sur-
veyed languages have parsers. Several (Darwin, MetaH, and Uni-
Con) also have “compilers,” enabling them to generate
executable systems from architectural descriptions, provided that

TABLE 4
ADL SUPPORT FORMODELING ARCHITECTURAL CONFIGURATIONS

Charact. Understand. Compos.
Refine./
Trace.

Heterogen. Scalability Evolution Dynamism Constraints
Non-Func.
Properties

ACME

Attach-
ments;
explicit

explicit, con-
cise textual
specification

provided
via tem-
plates, rep-
resentation
s, and rep-
maps

rep-maps open property
lists; required
explicit map-
pings across
ADLs

aided by explicit
configurations;
hampered by
fixed number of
roles

aided by explicit
configurations;
first-class families

none ports may only
be attached to
roles and vice
versa

allows any
attribute in
property
lists, but
does not
operate on
them

Aesop

Configu-
ration;
explicit

explicit, con-
cise graphical
specification;
parallel type
hierarchy for
visualization

provided
via repre-
sentations

none allows multiple
languages for
modeling seman-
tics; supports
development in
C

aided by explicit
configurations;
hampered by
fixed number of
roles

no support for par-
tial architectures;
aided by explicit
configurations

none ports may only
be attached to
roles and vice
versa; program-
mable stylistic
invariants

none

C2

Architec-
tural
Topology;
explicit

explicit, con-
cise textual
and graphical
specification

allowed;
supported
via inter-
nal compo-
nent
architec-
ture

none enabled by inter-
nal component
architecture; sup-
ports develop-
ment in C++,
Java, and Ada

aided by explicit
configurations
and variable
number of con-
nector ports;
used in the con-
struction of its
own tool suite

allows partial archi-
tectures; aided by
explicit configura-
tions; minimal
component inter-
dependencies; het-
erogeneous connec-
tors

unanticipated
dynamism:
element inser-
tion, removal,
and rewiring

fixed stylistic
invariants

none

Darwin

Binding;
in-line

in-line textual
specification
with many con-
nector details;
provides graph-
ical notation

supported
by lan-
guage’s
composite
component
feature

supports sys-
tem genera-
tion when
implementa-
tion con-
straining

allows multiple
languages for
modeling seman-
tics of primitive
components;
supports devel-
opment in C++

hampered by in-
line configura-
tions

no support for par-
tial architectures;
hampered by in-line
configurations

constrained
dynamism:
runtime repli-
cation of com-
ponents and
conditional
configuration

provided ser-
vices may only
be bound to
required ser-
vices and vice
versa

none

MetaH

Connec-
tions; in-
line

in-line textual
specification
with many con-
nector details;
provides graph-
ical notation

supported
via macros

supports sys-
tem genera-
tion;
implementa-
tion con-
straining

supports devel-
opment in Ada;
requires all com-
ponents to con-
tain a process
dispatch loop

hampered by in-
line configura-
tions

no support for par-
tial architectures;
hampered by in-line
configurations

none applications are
constrained with
non-functional
attributes

supports
attributes
such as exe-
cution pro-
cessor and
clock period

Rapide

Connect;
in-line

in-line textual
specification
with many con-
nector details;
provides graph-
ical notation

mappings
relate an
architec-
ture to an
interface

refinement
maps enable
comparative
simulations
of architec-
tures at dif-
ferent levels

supports devel-
opment of exe-
cutable
simulations in
Rapide’s execut-
able sublanguage

hampered by in-
line configura-
tions; used in
large-scale
projects

no support for par-
tial architectures;
hampered by in-line
configurations;

constrained
dynamism:
conditional
configuration
and dynamic
event genera-
tion

refinement maps
constrain valid
refinements;
timed poset con-
straint language

timed poset
model allows
modeling of
timing in the
constraint
language

SADL

Configu-
ration;
explicit

explicit, con-
cise textual
specification

mappings
relate an
architec-
ture to a
component

refinement
maps enable
correct
refinements
across styles

supports both
fine- and coarse-
grain elements

aided by explicit
configurations;
used in large-
scale project

no support for par-
tial architectures;
aided by explicit
configurations;

none programmable
stylistic invari-
ants; refinement
maps constrain
valid refinements

architecture
modified by
adding con-
straints

UniCon

Connect;
explicit

explicit textual
and graphical
specification;
configuration
description
may be distrib-
uted

supported
through
composite
compo-
nents and
connectors

supports sys-
tem genera-
tion;
implementa-
tion con-
straining

supports only
predefined com-
ponent and con-
nector types;
supports compo-
nent wrappers

aided by explicit
configurations
and variable
number of con-
nector roles

some support for
partial architec-
tures; aided by
explicit configura-
tions;

none players may only
be attached to
roles and vice
versa

none

Weaves

Weave;
explicit

explicit, con-
cise graphical
specification

supported
through
composite
sockets

supports sys-
tem genera-
tion;
implementa-
tion con-
straining

development in
C, C++, Objec-
tive C, and For-
tran; requires all
tool fragments
to provide a set
of methods

aided by explicit
configurations,
sockets, and
variable number
of socket pads;
used in large-
scale project

allows partial archi-
tectures; aided by
explicit configura-
tions; support for
families via socket-
populatedframe-
works

unanticipated
dynamism:
element inser-
tion, removal,
and rewiring

precludes direct
component-to-
component links

allows asso-
ciation of
arbitrary,
uninter-
preted anno-
tations with
weaves

Wright

Attach-
ments;
explicit

explicit, con-
cise textual
specification

computa-
tion and
glue are
express-
ible as
architec-
tures

none supports both
fine- and coarse-
grain elements

aided by explicit
configurations
and variable
number of roles;
used in large-
scale project

suited for partial
specification; aided
by explicit configu-
rations

constrained
dynamism:
element inser-
tion, removal,
and rewiring

ports can only be
attached to roles
and vice versa;
programmable
stylistic invari-
ants

none

Features

ADL

20 of 24

component implementations already exist. Rapide’s compiler
generates executable simulations of Rapide architectures. C2’s
DRADEL environment, on the other hand, provides a tool that gen-
erates executable implementation skeletons from an architectural
model; the skeletons are completed either by developing new or
reusing OTS functionality.

Another aspect of analysis is enforcement of constraints. Pars-
ers and compilers enforce constraints implicit in type informa-
tion, non-functional attributes, component and connector
interfaces, and semantic models. Rapide also supports explicit
specification of other types of constraints, and provides means for
their checking and enforcement. ItsConstraint Checker analyzes
the conformance of a Rapide simulation to the formal constraints
defined in the architecture. C2’s constraint checker currently
focuses only on the topological rules of the style; an initial inte-
gration with the architecture constraint checking tool, Armani
[45], allows specification and enforcement of arbitrary con-
straints.

4.4.4 Refinement

Several ADLs support direct refinement of architectural mod-
els to executable code via “compilation.” Darwin, MetaH, and
UniCon achieve this in a manner similar to MILs: architectural
components are implemented in a programming language and the
architectural description serves only to ensure proper intercon-
nection and communication among them. The drawbacks of this
approach were discussed in Section 4.3.3. Rapide, on the other
hand, provides an executable sublanguage that contains many
common programming language control structures. C2 goes
beyond linking existing modules, but not as far as to provide exe-
cutable language constructs: an architecture is refined into a par-
tial implementation, which contains completion guidelines for
developers derived from the architectural description. For exam-
ple, each method is accompanied by specifications of its precon-
dition and postcondition, as shown in Fig. 20; the developer must
only ensure their satisfaction when implementing the method and
need not worry about the rest of the system.

Only SADL and Rapide provide tool support for refining
architectures acrossmultiple levels of abstraction and specificity.
SADL’s support is partial. It requires manual proofs of mappings
of constructs between an abstract and a more concretearchitec-
tural style. Such a proof is performed only once; thereafter,
SADL provides a tool that automatically checks whether any two
architectures described in the two styles adhere to the mapping.
Rapide, on the other hand, supports event maps between individ-
ual architectures. The maps are compiled by Rapide’sSimulator,
so that theConstraint Checker can verify that the events gener-

ated during simulation of the concrete architecture satisfy the
constraints in the abstract architecture.

4.4.5 Implementation Generation

A large number of ADLs, but not all, support generation of a
system from its architecture. Exceptions are SADL, ACME, and
Wright, which are currently used strictly as modeling notations
and provide no implementation generation support. It is interest-
ing to note that, while SADL focuses on refining architectures, it
does not take the final refinement step from architectural descrip-
tions to source code.

Several ADLs employ architectural “compilers,” as already
discussed above. Aesop adopts a different approach: it provides a
C++ class hierarchy for its concepts and operations, such as com-
ponents, connectors, ports, roles, and attachments. This hierarchy
forms a basis from which an implementation of an architecture
may be produced; the hierarchy is in essence a domain-specific
language for implementing Aesop architectures.

A similar approach is used in C2, which provides a framework
of abstract classes for C2 concepts [42]. Components and con-
nectors used in C2 applications are subclassed from the appropri-
ate framework classes. The framework has been implemented in
C++, Java, and Ada; several OTS middleware technologies have
been integrated with the framework to enable interactions
between C2 components implemented in different languages
[10]. Application skeletons produced by C2’s code generation
facilities discussed in above result in instantiated, but partially
implemented framework classes.

4.4.6 Dynamism

The limited support for modeling dynamism in existing ADLs,
discussed in Section 4.3.7, is reflected in the limited tool support
for dynamism. Darwin and Rapide can model only planned mod-
ifications at runtime: both support conditional configuration; Dar-
win also allows component replication. Their compilation tools
ensure that all possible configuration alternatives are enabled.

C2 and Weaves toolsets support dynamism more extensively.
Weaves provides a visual editor,Jacquard, which uses the pro-
vided API to the architectural model to dynamically manipulate a
weave in an arbitrary fashion. C2’sArchStudio tool [52] enables
arbitrary interactive construction, execution, and runtime-modifi-
cation of C2-style architectures implemented in Java.ArchStudio
supports modification of an architecture at runtime by dynami-
cally loading and linking new components or connectors into the
architecture. Both C2 and Weaves exploit their flexible connec-
tors (see Section 4.2) to support dynamism.

4.4.7 Summary of ADL Tool Support

Existing ADLs span a broad spectrum in terms of the design
and development tools they provide. On the one hand, ACME
currently only facilitates visualization of its architectures,
SADL’s toolset consists primarily of a refinement consistency
checker, and Weaves has focused on interactive specification and
manipulation of architectures. On the other hand, Darwin,
Rapide, and UniCon provide powerful architecture modeling
environments; C2 and Darwin are the only ADLs that provide

// PRE: pos \greater 0.0 \and pos \eqless num
public Color GetTile(Integer pos) {

/*** METHOD BODY ***/
return well_at_pos;

}
// POST: \result = well_at_pos \and ~num = num - 1.0

Fig. 20. Each method generated by C2 is preceded by its
precondition and followed by its postcondition.

21 of 24

tool support in all classification categories. Overall, existing
ADLs have put the greatest emphasis on visualization and analy-
sis of architectures and the least on refinement and dynamism. A
more complete summary of this section is given in Table 5.

5 CONCLUSIONS

Classifying and comparing any two languages objectively is a
difficult task. For example, a programming language, such as
Ada, contains MIL-like features and debates rage over whether
Java is “better” than C++ and why. On the other hand, there exist
both an exact litmus test (Turing completeness) and ways to dis-
tinguish different kinds of programming languages (imperative
vs. declarative vs. functional, procedural vs. OO). Similarly, for-
mal specification languages have been grouped into model-based,
state-based, algebraic, axiomatic, and so forth. Until now, how-
ever, no such definition or classification existed for ADLs.

The main contribution of this paper is just such a definition and
classification framework. The definition provides a simple litmus
test for ADLs that largely reflects community consensus on what
is essential in modeling an architecture: an architectural descrip-
tion differs from other notations by itsexplicit focus on connec-
tors and architectural configurations. We have demonstrated how
the definition and the accompanying framework can be used to
determine whether a given notation is an ADL and, in the pro-
cess, discarded several notations as potential ADLs. Some
(LILEANNA and ArTek) may be more surprising than others
(CHAM and Statecharts), but the same criteria were applied to
all.

Of those languages that passed the litmus test, several strad-
dled the boundary by either modeling their connectors in-line (in-
line configuration ADLs) or assuming a bijective relationship
between architecture and implementation (implementation con-
straining ADLs). We have discussed the drawbacks of both cate-
gories. Nevertheless, it should be noted that, by simplifying the

Active
Specification

Multiple Views Analysis Refinement
Implementation

Generation
Dynamism

ACME

none textual; “weblets” in
ACME-Web; architec-
ture views in terms of
high-level (template), as
well as basic constructs

parser none none none

Aesop

syntax-directed editor for
components; visualization
classes invoke specialized
external editors

textual and graphical;
style-specific visualiza-
tions; component and
connector types distin-
guished iconically

parser; style-specific
compiler; type checker;
cycle checker; checker
for resource conflicts
and scheduling feasibil-
ity

none build tool constructs
system glue code in
C for pipe-and-filter
style

none

C2

proactive “architecting” pro-
cess inDRADEL; reactive,
non-intrusive type checker;
design critics and to-do lists
in Argo

textual and graphical;
view of development
process

parser; style rule
checker; type checker

generates application
skeletons which can be
completed by reusing
OTS components

class framework
enables generation of
C/C++, Ada, and
Java code;DRADEL
generates applica-
tion skeletons

ArchStudio allows unan-
ticipated dynamic
manipulation of architec-
tures

Darwin

automated addition of ports to
communicating components;
propagation of changes across
bound ports; dialogs to spec-
ify component properties;

textual, graphical, and
hierarchical system
view

parser; compiler; “what
if” scenarios by instan-
tiating parameters and
dynamic components

compiler; primitive com-
ponents are implemented
in a traditional program-
ming language

compiler generates
C++ code

compilation and runtime
support forconstrained
dynamic change of archi-
tectures (replication and
conditional configura-
tion)

MetaH

graphical editor requires error
correction once architecture
changes areapplied; con-
strains the choice of compo-
nent properties via menus

textual and graphical;
component types distin-
guished iconically

parser; compiler; sched-
ulability, reliability,
and security analysis

compiler; primitive com-
ponents are implemented
in a traditional program-
ming language

DSSA approach;
compiler generates
Ada code

none

Rapide

none textual and graphical;
visualization of execu-
tion behavior by ani-
mating simulations

parser; compiler; analy-
sis via event filtering
and animation; con-
straint checker to ensure
valid mappings

compiler for executable
sublanguage; tools to
compile and verify event
pattern maps during sim-
ulation

executable simula-
tion construction in
Rapide’s executable
sublanguage

compilation and runtime
support forconstrained
dynamic change of archi-
tectures (conditional
configuration)

SADL

none textual only parser; analysis of rela-
tive correctness of
architectures with
respect to a refinement
map

checker for adherence of
architectures to a manu-
ally-proved mapping

none none

UniCon
graphical editor prevents
errors during design by
invoking language checker

textual and graphical;
component and connec-
tor types distinguished
iconically

parser; compiler; sched-
ulability analysis

compiler; primitive com-
ponents are implemented
in a traditional program-
ming language

compiler generates C
code

none

Weaves

none graphical only; compo-
nent and connector
types (sockets) distin-
guished iconically

parser; real-time execu-
tion animation; low
overhead observers;
analysis/debugging
components in a weave

none dynamic linking of
components in C,
C++, Objective C,
and Fortran; no code
generation

Jacquard allows unantic-
ipated dynamic manipu-
lation of weaves

Wright

none textual only; model
checker provides a tex-
tual equivalent of CSP
symbols

parser; model checker
for type conformance of
ports to roles; analysis
of individual connectors
for deadlock

none none none

Features

ADL

22 of 24

relationship between architecture and implementation,implemen-
tation constraining ADLs have been more successful in generat-
ing implementations than “mainstream” (implementation
independent) ADLs. Thus, for example, although C2 is imple-
mentation independent, we assumed this 1-to-1 relationship in
building the initial prototype of our implementation generation
tools [42].

The comparison of existing ADLs highlighted several areas
where they provide extensive support, both in terms of architec-
ture modeling capabilities and tool support. For example, a num-
ber of languages use powerful formal notations for modeling
component and connector semantics. They also provide a pleth-
ora of architecture visualization and analysis tools. On the other
hand, the survey also pointed out areas in which existing ADLs
are severely lacking. Only a handful support the specification of
non-functional properties, even though such properties may be
essential for system implementation and management of the cor-
responding development process. Architectural refinement and
constraint specification have also remained largely unexplored.
Finally, both tools and notations for supporting architectural
dynamism are still in their infancy. Only two ADLs have even
attempted to achieve unanticipated dynamism thus far.

Perhaps most surprising is the inconsistency with which ADLs
support connectors, especially given their argued primary role in
architectural descriptions. Several ADLs provide only minimal
connector modeling capabilities. Others either only allowmodel-
ing of complex connectors (e.g., Wright) or implementation of
simple ones (e.g., UniCon). C2 has provided the initial demon-
stration of the feasibility of implementing complex connectors by
employing existing research and commercial connector technolo-
gies, such as Polylith [56] and CORBA [53]. However, this
remains a wide open research issue.

Finally, neither the definition nor the accompanying frame-
work have been proposed as immutable laws on ADLs. Quite the
contrary, we expect both to be modified and extended in the
future. We are currently considering several issues: providing a
clearer distinction between descriptive languages (e.g., ACME)
and those that primarily enable semantic modeling (e.g., Wright);
comparing software ADLs to hardware ADLs; and expanding the
framework to include other criteria (e.g., support for extensibil-
ity). We have had to resort to heuristics and subjective criteria in
comparing ADLs at times, indicating areas where future work
should be concentrated. But what this taxonomy provides is an
important advance towards answering the question of what an
ADL is and why, and how it compares to other ADLs. Such
information is needed both for evaluating new and improving
existing ADLs, and for targeting future research and architecture
interchange efforts more precisely.

ACKNOWLEDGMENTS

We wish to thank the following people for their insightful com-
ments on earlier drafts of this paper: R. Allen, K. Anderson, P.
Clements, R. Fielding, D. Garlan, M. Gorlick, W. Griswold, D.
Hilbert, A. van der Hoek, P. Kammer, J. Kramer, D. Luckham, J.
Magee, R. Monroe, M. Moriconi, K. Nies, P. Oreizy, D. Red-
miles, R. Riemenschneider, J. Robbins, D. Rosenblum, R. Selby,

M. Shaw, S. Vestal, J. Whitehead, and A. Wolf. We also thank the
referees of TSE for their helpful reviews.

Effort sponsored by the Defense Advanced Research Projects
Agency, and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-97-2-0021. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.

REFERENCES

[1] G. Abowd, R. Allen, and D. Garlan. “Using Style to Understand
Descriptions of Software Architecture.” InProceedings of the First
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 9-20, Los Angeles, CA, December 1993.

[2] R. Allen. “A Formal Approach to Software Architecture.” Ph.D.
Thesis, Carnegie Mellon University, CMU Technical Report CMU-
CS-97-144, May 1997.

[3] R. Allen, R. Douence, and D. Garlan. “Specifying Dynamism in
Software Architectures.” InProceedings of the Workshop on
Foundations of Component-Based Systems, pages 11-22, Zurich,
Switzerland, September 1997.

[4] R. Allen and D. Garlan. “A Formal Basis for Architectural
Connection.” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 3, pp. 213-249, July 1997.

[5] R. Allen, D. Garlan, and J. Ivers. “Formal Modeling and Analysis of
the HLA Component Integration Standard.” InProceedings of the
Sixth ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 70-79, Lake Buena Vista, FL, November 1998.

[6] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. “Domain-
Specific Software Architectures for Guidance, Navigation, and
Control.” International Journal of Software Engineering and
Knowledge Engineering, vol. 6, no. 2, 1996.

[7] P. C. Clements. “Formal Methods in Describing Architectures.” In
Proceedings of the Workshop on Formal Methods and Architecture,
Monterey, CA, 1995.

[8] P. C. Clements. “A Survey of Architecture Description Languages.”
In Proceedings of the Eighth International Workshop on Software
Specification and Design, Paderborn, Germany, March 1996.

[9] P. C. Clements. “Working Paper for the Constraints Sub-Group.”
EDCS Architecture and Generation Cluster (http://
www.sei.cmu.edu/~edcs/CLUSTERS/ARCH/index.html), April
1997.

[10] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. “Using Off-the-
Shelf Middleware to Implement Connectors in Distributed Software
Architectures.” InProceedings of the 21st International Conference
on Software Engineering (ICSE’99), Los Angeles, CA, May 1999.

[11] D. Garlan, editor.Proceedings of the First International Workshop
on Architectures for Software Systems, Seattle, WA, April 1995.

[12] D. Garlan. “An Introduction to the Aesop System.” July 1995.
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop-
overview.ps

[13] D. Garlan. “Style-Based Refinement for Software Architecture.” In
A. L. Wolf, ed.,Proceedings of the Second International Software
Architecture Workshop (ISAW-2), pages 72-75, San Francisco, CA,
October 1996.

[14] D. Garlan, R. Allen, and J. Ockerbloom. “Exploiting Style in
Architectural Design Environments.” InProceedings of
SIGSOFT’94: Foundations of Software Engineering, pages 175–
188, New Orleans, Louisiana, USA, December 1994.

[15] D. Garlan, R. Monroe, and D. Wile. “ACME: An Architecture
Description Interchange Language.” InProceedings of
CASCON’97, November 1997.

23 of 24

[16] D. Garlan, F. N. Paulisch, and W. F. Tichy, editors.Summary of the
Dagstuhl Workshop on Software Architecture, February 1995.
Reprinted inACM Software Engineering Notes, pages 63-83, July
1995.

[17] D. Garlan, J. Ockerbloom, D. Wile. “Towards an ADL Toolkit.”
EDCS Architecture and Generation Cluster (http://
www.cs.cmu.edu/~spok/adl/index.html), December 1998.

[18] C. Ghezzi, M. Jazayeri, D. Mandrioli.Fundamentals of Software
Engineering. Prentice Hall, 1991.

[19] J. A. Goguen and T. Winkler. “Introducing OBJ3.” Technical
Report SRI-CSL-88-99, SRI International, 1988

[20] M. Gorlick and A. Quilici. “Visual Programming in the Large versus
Visual Programming in the Small.” InProceedings of the 1994 IEEE
Symposium on Visual Languages, pages 137-144, St. Louis, MO,
October 1994.

[21] M. M. Gorlick and R. R. Razouk. “Using Weaves for Software
Construction and Analysis.” InProceedings of the 13th
International Conference on Software Engineering (ICSE13), pages
23-34, Austin, TX, May 1991.

[22] P. Hagger. “QAD, a Modular Interconnection Language for Domain
Specific Software Architectures.” Technical Report, University of
Maryland, June 1993.

[23] D. Harel. “Statecharts: A Visual Formalism for Complex Systems.”
Science of Computer Programming, 1987.

[24] C. A. R. Hoare.Communicating Sequential Processes. Prentice
Hall, 1985.

[25] P. Inverardi and A. L. Wolf. “Formal Specification and Analysis of
Software Architectures Using the Chemical Abstract Machine
Model.” IEEE Transactions on Software Engineering, vol. 21, no. 4,
pages 373-386, April 1995.

[26] F. Jahanian and A. K. Mok. “Modechart: A Specification Language
for Real-Time Systems.” IEEE Transactions on Software
Engineering, vol. 20, no. 12, pages 933-947, December 1994.

[27] P. Kogut and P. C. Clements. “Features of Architecture Description
Languages.” Draft of a CMU/SEI Technical Report, December
1994.

[28] P. Kogut and P. C. Clements. “Feature Analysis of Architecture
Description Languages.” InProceedings of the Software Technology
Conference (STC’95), Salt Lake City, April 1995.

[29] C. W. Krueger. “Software Reuse.”Computing Surveys, vol. 24, no.
2, pages 131-184, June 1992.

[30] D. Luckham.ANNA, a Language for Annotating Ada Programs:
Reference Manual, volume 260 ofLecture Notes in Computer
Science. Springer-Verlag, Berlin, 1987.

[31] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and
W. Mann. “Specification and Analysis of System Architecture
Using Rapide.”IEEE Transactions on Software Engineering, vol.
21, no. 4, pages 336-355, April 1995.

[32] D. C. Luckham and J. Vera. “An Event-Based Architecture
Definition Language.”IEEE Transactions on Software Engineering,
vol. 21, no. 9, pages 717-734, September 1995.

[33] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz. “Partial
Orderings of Event Sets and Their Application to Prototyping
Concurrent, Timed Systems.”Journal of Systems and Software, vol.
21, no. 3, pages 253-265, June 1993.

[34] D. C. Luckham, J. Vera, and S. Meldal. “Three Concepts of System
Architecture.” Technical Report, CSL-TR-95-674, Stanford
University, Palo Alto, July 1995.

[35] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. “Specifying
Distributed Software Architectures.” InProceedings of the Fifth
European Software Engineering Conference (ESEC’95), Barcelona,
September 1995.

[36] J. Magee and J. Kramer. “Dynamic Structure in Software
Architectures.” In Proceedings of ACM SIGSOFT’96: Fourth
Symposium on the Foundations of Software Engineering (FSE4),
pages 3-14, San Francisco, CA, October 1996.

[37] J. Magee and D. E. Perry, editors.Proceedings of the Third
International Software Architecture Workshop, Orlando, FL,
November 1998.

[38] N. Medvidovic. “ADLs and Dynamic Architecture Changes.” In A.

L. Wolf, ed., Proceedings of the Second International Software
Architecture Workshop (ISAW-2), pages 24-27, San Francisco, CA,
October 1996.

[39] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. “Using
Object-Oriented Typing to Support Architectural Design in the C2
Style.” InProceedings of ACM SIGSOFT’96: Fourth Symposium on
the Foundations of Software Engineering (FSE4), pages 24-32, San
Francisco, CA, October 1996.

[40] N. Medvidovic and D. S. Rosenblum. “Domains of Concern in
Software Architectures and Architecture Description Languages.”
In Proceedings of the USENIX Conference on Domain-Specific
Languages, pages 199-212, Santa Barbara, CA, October 1997.

[41] N. Medvidovic and D. S. Rosenblum. “Assessing the Suitability of
a Standard Design Method for Modeling Software Architectures.”
In Proceedings of the First Working IFIP Conference on Software
Architecture (WICSA1), pages 161-182, San Antonio, TX, February
1999.

[42] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. “A Language
and Environment for Architecture-Based Software Development
and Evolution.” InProceedings of the 21st International Conference
on Software Engineering (ICSE’99), Los Angeles, CA, May 1999.

[43] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. “Formal
Modeling of Software Architectures at Multiple Levels of
Abstraction.” InProceedings of the California Software Symposium
1996, pages 28-40, Los Angeles, CA, April 1996.

[44] R. Milner, J. Parrow, and D. Walker.A Calculus of Mobile
Processes, Parts I and II. Volume 100 ofJournal of Information and
Computation, pages 1-40 and 41-77, 1992.

[45] R. Monroe. Capturing Software Architecture Design Expertise With
Armani. Technical Report CMU-CS-98-163, Carnegie Mellon
University, October 1998.

[46] M. Moriconi and R. A. Riemenschneider. “Introduction to SADL
1.0: A Language for Specifying Software Architecture Hierarchies.”
Technical Report SRI-CSL-97-01, SRI International, March 1997.

[47] M. Moriconi, X. Qian, and R. A. Riemenschneider. “Correct
Architecture Refinement.” IEEE Transactions on Software
Engineering, vol. 21, no. 4,, pages 356-372, April 1995.

[48] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong.
“Secure Software Architectures.” InProceedings of the 1997 IEEE
Symposium on Security and Privacy, Oakland, CA, May 1997.

[49] P. Newton and J. C. Browne. “The CODE 2.0 Graphical Parallel
Programming Language.” InProceedings of the ACM International
Conference on Supercomputing, July 1992.

[50] K. Ng, J. Kramer, and J. Magee. “A CASE Tool for Software
Architecture Design.” Journal of Automated Software Engineering
(JASE), Special Issue on CASE-95, vol. 3, no. 3-4, pp. 261-284,
1996.

[51] P. Oreizy. “Issues in the Runtime Modification of Software
Architectures.” Technical Report, UCI-ICS-96-35, University of
California, Irvine, August 1996.

[52] P. Oreizy, N. Medvidovic, and R. N. Taylor. “Architecture-Based
Runtime Software Evolution.” InProceedings of the 20th
International Conference on Software Engineering (ICSE’98),
pages 177-186, Kyoto, Japan, April 1998.

[53] R. Orfali, D. Harkey, and J. Edwards.The Essential Distributed
Objects Survival Guide. John Wiley & Sons, Inc., 1996.

[54] D. E. Perry and A. L. Wolf. “Foundations for the Study of Software
Architectures.”ACM SIGSOFT Software Engineering Notes, vol.
17, no. 4, pages 40-52, October 1992.

[55] R. Prieto-Diaz and J. M. Neighbors. “Module Interconnection
Languages.”Journal of Systems and Software, vol. 6, no. 4, pages
307-334, October 1989.

[56] J. Purtilo. “The Polylith Software Bus.”ACM Transactions on
Programming Languages and Systems, vol. 16, no. 1, pages 151-
174, January 1994.

[57] Rational Partners. “UML Semantics.” Object Management Group
document ad/97-08-04. September 1997. Available from http://
www.omg.org/docs/ad/97-08-04.pdf.

[58] Rational Partners. “UML Notation Guide.” Object Management
Group document ad/97-08-05. September 1997. Available from

24 of 24

http://www.omg.org/docs/ad/97-08-05.pdf.
[59] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. “Extending Design

Environments to Software Architecture Design.” InProceedings of
the 1996 Knowledge-Based Software Engineering Conference
(KBSE), pages 63-72, Syracuse, NY, September 1996.

[60] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum. “Integrating Architecture Description Languages with a
Standard Design Method.” InProceedings of the 20th International
Conference on Software Engineering (ICSE’98), pages 209-218,
Kyoto, Japan, April 1998.

[61] M. Shaw. “Procedure Calls are the Assembly Language of System
Interconnection: Connectors Deserve First Class Status.” In
Proceedings of the Workshop on Studies of Software Design, May
1993.

[62] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G.
Zelesnik. “Abstractions for Software Architecture and Tools to
Support Them.”IEEE Transactions on Software Engineering, vol.
21, no. 4, pages 314-335, April 1995.

[63] M. Shaw, R. DeLine, and G. Zelesnik. “Abstractions and
Implementations for Architectural Connections.” InProceedings of
the Third International Conference on Configurable Distributed
Systems, May 1996.

[64] M. Shaw and D. Garlan. “Characteristics of Higher-Level
Languages for Software Architecture.” Technical Report, CMU-
CS-94-210, Carnegie Mellon University, December 1994.

[65] M. Shaw and D. Garlan. “Formulations and Formalisms in Software
Architecture.” Jan van Leeuwen, editor,Computer Science Today:
Recent Trends and Developments, Springer-Verlag Lecture Notes in
Computer Science, Volume 1000, 1995.

[66] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, April 1996.

[67] J. M. Spivey.The Z notation: a reference manual. Prentice Hall,
New York, 1989.

[68] M. Shaw, D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C. Scott, M.
Schumacher. “Candidate Model Problems in Software
Architecture.” Unpublished manuscript, November 1995. Available
from http://www.cs.cmu.edu/afs/cs/project/compose/www/html/
ModProb/.

[69] A. Terry, R. London, G. Papanagopoulos, and M. Devito. “The
ARDEC/Teknowledge Architecture Description Language (ArTek),
Version 4.0.” Technical Report, Teknowledge Federal Systems, Inc.
and U.S. Army Armament Research, Development, and
Engineering Center, July 1995.

[70] W. Tracz. “LILEANNA: A Parameterized Programming
Language.” InProceedings of the Second International Workshop
on Software Reuse, pages 66-78, Lucca, Italy, March 1993.

[71] S. Vestal. “A Cursory Overview and Comparison of Four
Architecture Description Languages.” Technical Report, Honeywell
Technology Center, February 1993.

[72] S. Vestal. “MetaH Programmer’s Manual, Version 1.09.” Technical
Report, Honeywell Technology Center, April 1996.

[73] A. L. Wolf, editor. Proceedings of the Second International
Software Architecture Workshop (ISAW-2), San Francisco, CA,
October 1996.

[74] A. L. Wolf. “Succeedings of the Second International Software
Architecture Workshop (ISAW-2).”ACM SIGSOFT Software
Engineering Notes, vol. 22, no. 1, pages 42-56, January 1997.

