1of 24

A Classification and Comparison Framework for
Software Architecture Description Languages

Nenad Medvidovic and Richard N. Taylor

Abstract—Software architectures shift the focus of developers from lines-of-code to coarser-grained architectural elements and their
overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notationsatotsuppor
tecture-based development. There is, however, little consensus in the research community on what is an ADL, what aapehitef an

ture should be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem. Furthermore, the
distinction is rarely made between ADLs on one hand and formal specification, module interconnection, simulation, and pgogrammin
languages on the other. This paper attempts to provide an answer to these questions. It motivates and presents a @efiagsificaad

tion framework for ADLs. The utility of the definition is demonstrated by using it to differentiate ADLs from other modetitignsot

The framework is used to classify and compare several existing ADLSs, enabling us in the process to identify key prof2ised loé A
comparison highlights areas where existing ADLs provide extensive support and those in which they are deficient, suggestiiy a re
agenda for the future.

Index Terms—Software architecture, architecture description language, component, connector, configuration, definition, classification,
comparison.

2

1 INTRODUCTION [4].1 Recently, initial work has been done on an architecture inter-
change language, ACME [15], which is intended to support map-
Software architecture research is directed at reducing costspfg of architectural specifications from one ADL to another, and
developing applications and increasing the potential for commoRence enable integration of support tools across ADLs. Although,
ality between different members of a closely related product famstrictly speaking, ACME is not an ADL, it contains a number of
ily [54], [66]. Software development based on commoRDL-like features. Furthermore, it is useful to compare and dif-
architectural idioms has its focus shifted from lines-of-code trentiate it from other ADLs to highlight the difference between
coarser-grained architectural elements (software components @dADL and an interchange language. It is therefore included in
connectors) and their overall interconnection structure. To Sugis paper.
port architecture-based development, formal modeling notationsThere is, however, still little consensus in the research commu-
and analysis and development tools that operate on architectiig} on what an ADL is, what aspects of an architecture should be
specifications are needed. Architecture description languag@sdeled by an ADL, and what should be interchanged in an inter-
(ADLs) and their accompanying toolsets have been proposedgiange language [43]. For example, Rapide may be characterized
the answer. Loosely defined, “an ADL for software applicationgs a general-purpose system description language that allows
focuses on the high-level structure of the overall applicatiomodeling of component interfaces and their externally visible
rather than the implementation details of any specific source magkhavior, while Wright formalizes the semantics of architectural
ule” [71]. ADLs have recently become an area of intense reseaigdhnections. Furthermore, the distinction is rarely made between
in the software architecture community [11], [16], [73], [37]. ADLs on one hand and formal specification, module interconnec-
A number of ADLs have been proposed for modeling architegon (MIL), simulation, and programming languages on the other.
tures both within a particular domain and as general-purpoktieed, for example, Rapide can be viewed as both an ADL and a
architecture modeling languages. In this paper, we specificalinulation language, while Clements contends that CODE [49], a
consider those languages most commonly referred to as ADlgirallel programming language, is also an ADL [8].
Aesop [14], [12], ArTek [69], C2 [39], [42], Darwin [35], [36], Another source of discord is the level of support an ADL
LILEANNA [70], MetaH [6], [72], Rapide [31], [32], SADL should provide to developers. At one end of the spectrum, it can
[46], [47], UniCon [62], [63], Weaves [20], [21], and Wright [2], be argued that the primary role of architectural descriptions is to
aid understanding and communication about a software system.
As such, an ADL must have simple, understandable, and possibly
* N. Medvidovic is with the University of Southern California.graphical syntax, well understood, but not necessarily formally

Email: neno@usc.edu. defined semantics, and the kinds of tools that aid visualization,
* R.N. Taylor is with the University of California, Irvine. E- understanding, and simple analyses of architectural descriptions
mail: taylor@ics.uci.edu. (e.g., Argo [59]). At the other end of the spectrum, the tendency

1. The full name of the ADL for modeling architectures in the C2 architectural
style is ‘C2sADEL.” To distinguish it from SADL, which resulted from an unre-
lated projectc2sADEL will be referred to simply as “C2” in this paper.

2 of 24

has been to provide formal syntax and semantics of ADLs, povwiechniques to decide what features an ADL should have and then
erful analysis tools, model checkers, parsers, compilers, codssessed existing languages with respect to those features.
synthesis tools, runtime support tools, and so on (e.g., SADL's While their taxonomy is valuable in bettering our understand-
architecture refinement patterns [47], Darwin’s use-oélculus ing of surveyed ADLSs, it comes up short in several respects.
to formalize architectural semantics [36], or UniCon’s parser anBomain analysis is typically used in well-understood domains,
compiler [62]). While both perspectives have merit, ADLwhich is not the case with ADLs. The survey does not provide
researchers have generally adopted one or the other extrear®y deeper insight into what an ADL is, nor does it present its
view. It is our contention that both are important and should beriteria for including a particular modeling notation. Quite the
reflected in an ADL. contrary, several surveyed languages are not commonly consid-
Several researchers have attempted to shed light on the’yed ADLSs, yet little justification is given for their inclusion. Per-
issues, either by surveying what they consider existing ADLs [gfhaps most illustrative is the example of Modechart, a
[27], [28], [71] or by listing “essential requirements” for an ADL Specification language for hard-real-time computer systems [26].
[32], [62], [64], [65]. In our previous work we attempted to Clements labels Modechart “a language on the edge of ADLs,”
understand and compare ADLs based on problem areas withirhose utility to the architecture community lies in its sophisti-
software architectures for which they are suited [40]. Each ofated analysis and model checking toolset [7]. Tool support alone
these attempts furthers our understanding of what an ADL i¢s not a sufficient reason to consider it an ADL however.
however, for various reasons, each ultimately falls short in pro- Several of the criteria Kogut and Clements used for ADL eval-
viding a definitive answer to the question. uation, such as the ability to model requirements and algorithms,
This paper builds upon the results of these efforts. It is furthét™® outside an ADL's scopeThis kind of survey also runs the
influenced by insights obtained from studying individual ADLs,"iSK of not asking all of the relevant questions. Finally, the
relevant elements of languages commonly not considered ADI&/thOrs often have to extrapolate very specific information from
(e.g., programming languages), and experiences and needs Oﬁthlple, potentially subjective, vague, or misunderstood ques-
ongoing research project, C2. The paper presents a definition s]
a relatively concise classification framework for ADLs: an ADL ~ Vestal's approach [71] is more bottom-up. He surveyed four
must explicitly modetomponentsconnectorsand theiconfigu- €Xisting ADLs (LILEANNA, MetaH, Rapide, and QAD [22])
rations furthermore, to be truly usable and useful, it must prof"”d attempted to identify their common prppertles. He concluded
vide tool support for architecture-based development angthat they all model or support the following concepts to some

evolution. These four elements of an ADL are further broke€9ree:
down into constituent parts. ¢ compon_ents,

The remainder of the paper is organized as follows. Section 2° cgnnect{ons, .)
discusses contributions and shortcomings of other attempts af hierarchical composition, where one component contains an
surveying and classifying ADLs. Section 3 defines our taxonomy ~ €ntire subarchitecture, . .
of ADLs and demonstrates its utility by determining whether sev- * computation paradigms, i.e., semantics, constraints, and non-
eral existing notations are ADLs. Section 4 assesses the above- functional properties,
mentioned ADLs based on the criteria established in Section 3.* communication paradigms,

Discussion and conclusions round out the paper. * underlying formal models,

* tool support for modeling, analysis, evaluation, and verifica-
tion, and

* automatic application code composition.

Any effort such as this one is based on discoveries and concléithough “cursory” (as he qualifies it) and limited in its scope,
sions of other researchers. We closely examined ADL surveyéestal’s survey contains useful insights that bring us closer to
conducted by Clements and Kogut [8], [27], [28] and Vestal [71]answering the question of what an ADL is. In its approach, our
We also studied several researchers’ attempts at identifyirgyirvey is closer to Vestal's than to Clements and Kogut's.
essential ADL characteristics and requirements: Luckham and In our previous work [40], we attempted to identify the prob-
Vera [32], Shaw and colleagues [62], Shaw and Garlan [64], [65lems or areas of concern that need to be addressed by ADLSs:
and Tracz [74]. As a basis for architectural interchange, ACME ° representation,

[15] gave us key insights into what needs to remain constante design process support,
across ADLs. Finally, we built upon our conclusions from earlier e static and dynamic analysis,
attempts to shed light on the nature and needs of architecture specification-time and execution-time evolution,

2 RELATED APPROACHES

modeling [40], [42]. e refinement,
* traceability, and
2.1 Previous Surveys * simulation/executability.

Understanding these areas and their properties is a key to better

_ Clements and Kogut [8], [27], [28] provide an extensive Classiyqerstanding the needs of software architectures, architecture-
fication of existing ADLs. The classification is based on an
exhaustive questionnaire of ADL characteristics and features,2 Adi onof th soft hitect 4 therefore ADLS. |

) H . ISCUSsIon O € SCope of software arcnitectures, an erefore S, IS
complet_ed by each langua_ge S deS|gn team. The Surve_y was C%ﬂ/ n by Perry and Wolf [54]. Their conclusions are largely mirrored in the defini-
ducted in a top-down fashion: the authors used domain analysish of architectures given by Shaw and Garlan [66].

30f 24

based development, and architectural description and intemrgued the need to treat connectors explicitly, as first-class enti-
change; a study of these areas is also needed to guide the detiek in an ADL [4], [61], [64]. In [64], they also elaborate six
opment of next-generation ADLs. We demonstrated that eaatiasses of properties that an ADL should provide: composition,
existing ADL currently supports only a small subset of thesabstraction, reusability, configuration, heterogeneity, and analy-
domains, and discussed possible reasons for that. sis. They demonstrate that other existing notations, such as infor-
While we believe that this taxonomy gives the architect amal diagrams, modularization facilities provided by

sound foundation for selecting an ADL and orients discoursprogramming languages, and MILs, do not satisfy the above
towards problem solving, it is still very much a preliminary con-properties and hence cannot fulfill architecture modeling needs.
tribution. Furthermore, our comparison of ADLs based on these In [65], Shaw and Garlan identify seven levels of architecture
categories did not reveal what specific characteristics and cospecification capability:
structs render an ADL well suited for solving a particular set of ¢ capturing architectural information,
problems or whether certain constructs are complementary ore construction of an instance,
mutually exclusive. Consequently, we believe that a feature- « composition of multiple instances,
based classification and comparison of ADLs is also needed. « selection among design or implementation alternatives,

* verifying adherence of an implementation to specification,
2.2 Insights from Individual Systems * analysis, and

* automation.

'They conclude that, while ADLs invariably provide notations for

« component abstraction cgpturing system descriptions (Ievel_l),. few suppor.t other Ievells.

. communication abstrac’tion It is unclear, however, whgt set of crlterlq thgy applied to .the dif-
' ferent ADLs and how stringent those criteria were, particularly

* communication integrity, which mandates that only COMpOg; e this paper will show that a number of ADLs do provide a

nents that are connected in an architecture may communicaigsigerable amount of support for most of the above capabili-
in the resulting implementation,

In [32], Luckham and Vera list requirements for an ADL
based on their work on Rapide:

ties.
* ability to model dynamic architectures, Finally, in [43], Medvidovic and colleagues argue that, in order
* hierarchical composition, and to adequately support architecture-based development and analy-
* relativity, or the ability to relate (map) behaviors betweersis, one must model architectures at four levels of abstraction:
architectures. internal component semantics, component interfaces, component

As a result of their experience with UniCon, Shaw and colinterconnections in an architecture, and architectural style rules.
leagues list the following properties an ADL should exhibit [62]: This taxonomy presents an accurate high-level view of architec-

* ability to model components, with property assertions, interture modeling needs, but is too general to serve as an adequate
faces, and implementations, ADL comparison framework. Furthermore, it lacks any focus on

* ability to model connectors, with protocols, property assereonnectors.
tions and implementations,

* abstraction and encapsulation, 2.4 Architecture Interchange

* types and type checking, and

- . Perhaps the closest the research community has come to a con-
* ability to accommodate analysis tools.

Clearly. the ab ; | b idered d f_s_ensus on ADLs has been the emerging endorsement by a seg-
early, the above features alone cannot be considered defifly v of the community of ACME as an architecture interchange

tive in_dic_:ators of how to identify an ADL. They ha_1ve reS.UItedlanguage [15]. In order to meaningfully interchange architectural
from limited experience of two research groups with their owry

I Y th tvaluable dat ints in t _Bﬁecifications across ADLs, a common basis for all ADLs must
anguages. However, they represent vajuable data points In I estaplished. Garlan and colleagues believe that common basis
to understand and classify ADLs.

to be their core ontology for architectural representation:
* components,
* connectors,

In [74], Tracz defines an ADL as consisting of four “C”s: com- * SyStéms, or configyrationg of cgmponents and connectors,
ponents, connectors, configurations, and constraints. This taxon-" POIts, or points of interaction with a component,
omy is appealing, especially in its simplicity, but needs further * roles, or points of interaction with a connector,
elaboration: justification for and definitions of the four “C”s, * representations, used to model hierarchical compositions,
aspects of each that need to be modeled, necessary tool support, and
and so on. Tracz’s taxonomy is similar to Perry and Wolf’s origi- * rep-maps, which map a composite component or connector’s
nal model of software architectures, which consists of elements, internal architecture to elements of its external interface.
form, and rationale [54]. Perry and Wolf's elements are Tracz'th ACME, any other aspect of architectural description is repre-
components and connectors, their form subsumes an architectusehted with property lists (i.e., it is not core).
configuration, and the rationale is roughly equivalent to con- ACME has resulted from a careful consideration of issues in
straints. and notations for modeling architectures. As such, it could be
Shaw and Garlan have attempted to identify unifying themegiewed as a good starting point for studying existing ADLs and
and motivate research in ADLs. Both authors have successfullleveloping new ones. However, ACME represents the least com-

2.3 Attempts at Identifying Underlying Concepts

4 of 24

mon denominator of existing ADLs rather than a definition of ar ADL

ADL. It also does not provide any means for understanding ¢
classifying those features of an architectural description that a
placed in property lists. Finally, certain structural constraint:
imposed by ACME (e.g., a connector may not be directly
attached to another connector), satisfy the needs of sor
approaches (e.g., Aesop, UniCon, and Wright), but not of othe
(e.g., C2).

3 ADL CLASSIFICATION AND COMPARISON
FRAMEWORK

Individually, none of the above attempts adequately answer tt
guestion of what an ADIs. Instead, they reflect their authors’
views on what an ADLshould haveor should be able to do
However, a closer study of their collections of features an
requirements shows that there is a common theme among the
which is used as a guide in formulating our framework for ADL

Architecture Modeling Features

Components

Interface

Types

Semantics

Constraints

Evolution

Non-functional properties
Connectors

Interface

Types

Semantics

Constraints

Evolution

Non-functional properties
Architectural Configurations

Understandability

Compositionality

Refinement and traceability

Heterogeneity

Scalability

Evolution

Dynamism

Constraints

Non-functional properties

Tool Support

Active Specification

classification and comparison. To complete the framework, th Multiple Views

characteristics of individual ADLs and summaries of discussion Qgﬁﬁgﬁem

on ADLs that occurred at the three International Software Archi Implementation Generation
Dynamism

tecture Workshops [11], [73], [37], were studied. To a large
degree, our taxonomy reflects features supported by all, or mo
existing ADLs. In certain cases, we also argue for characteristii Fi9- 1. ADL classification and comparison framework. Essential
typically not supported by current ADLs, but which have eithe) M0d€ling features are in bold font.
been identified in the literature as important for architecture
based development or have resulted from our experience with ogider to inferany kind of information about an architecture, at a
own research project in software architectures, C2. Finally, w&inimum, interfacesof constituent components must also be
have tried to learn from and, where relevant, apply the extensivaodeled. Without this information, an architectural description
experience with languages for modeling other aspects of softwalp@comes but a collection of (interconnected) identifiers, similar
in formulating our framework. to a “boxes and lines” diagram with no explicit underlying
To properly enable further discussion, several definitions argemantics. Several other aspects of components, connectors, and
needed. There is no standard, universally accepted definition @®nfigurations are desirable, but not essential: their benefits have
architecture, but we will use as our working definition the onéeen acknowledged and possibly demonstrated in the context of a
provided by Shaw and Garlan [66]: problem domain or a style, but their absence does not mean that a
Software architecture [is a level of design that] involves given language is not an ADL.
the description of elements from which systems are built, Even though the suitability of a given language for modeling
interactions among those elements, patterns that guide software architectures is independent of whether and what kinds
their composition, and constraints on these patterns. of tool supportit provides, an accompanying toolset will render
An ADL is thus a language that provides features for modelingn ADL both more usable and useful. Conversely, the desired
a software system'sonceptualarchitecture, distinguished from manipulations of architectural models by tools may influence the
the system’smplementationADLs provide both a concrete syn- modeling features provided in an ADL. A large segment of the
tax and a conceptual framework for characterizing architecturggDL research community is actively studying the issue of tool
[15]. The conceptual framework typically reflects characteristicgsupport; an effort to identify a canonical “ADL toolkit” is cur-
of the domain for which the ADL is intended and/or the architecrently under way [17].

tural style. The framework typically subsumes the ADLS under- tpo Ap| classification and comparison framework is depicted
lying semantic theory (e.g, CSP, Petri nets, finite state machineg).rig 1 1t is intended to be extensible and modifiable, which is

crucial in a field that is still largely in its infancy. The remainder
of this section motivates and further elaborates on each category

We introduce the top-level categories of our ADL classificaf the framework.

tion and comparison framework in this section. The building The categories identified in the framework are orthogonal to an
blocks of an architectural description are ¢hmponents(2) ADL's scope of applicability. As a model of a system at a high
connectorsand (3)architectural configurationd An ADL must level of abstraction, an ADL is intended (and can only be
provide the means for theixplicit specification; this enables us expected) to provide jgartial depiction of the system. The types

to determine whether or not a particular notation is an ADL. I®f information on which the ADL focuses may be the characteris-
tics of an application domain, a style of system composition (i.e.,
N architectural style), or a specific set of properties (e.g., distri-
bution, concurrency, safety, and so on). Regardless of the focus

3.1 Framework Categories

3. “Architectural configurations” will, at various times in this paper, be referre
to simply as “configurations” or “topologies.”

50f 24

and nature of the ADL, in general the desired kinds of representhehavior. Early specification of such properties (at the architec-

tion, manipulation, and qualities of architectural modelgural level) is needed to enable simulation of runtime behavior,

described in the ADL, and identified in in Fig. 1, remain constanperform analysis, enforce constraints, map component imple-
mentations to processors, and aid in project management.

3.1.1 Modeling Components

: : . . 3.1.2 Modeling Connectors
A componenin an architecture is a unit of computation or a

data store. Therefore, components are loci of computation andconnectorsare architectural building blocks used to model
state [62]. Components may be as small as a single procedurg@eractions among components and rules that govern those inter-
as large as an entire application. Each component may require 4igtions. Unlike components, connectors may not correspond to
own data or execution space, or it may share them with othgbmpilation units in an implemented system. They may be imple-
components. As already discussed, explicit companeetfaces mented as separately compilable message routing devices, but
are a feature required of ADLs. Additional comparison featurefay also manifest themselves as shared variables, table entries,
are those for modeling componeppes, semanticsonstraints pyffers, instructions to a linker, dynamic data structures,
evolution and non-functional properties Each is discussed sequences of procedure calls embedded in code, initialization
below. parameters, client-server protocols, pipes, SQL links between a
Interface — A component’s interface is a set of interactiondatabase and an application, and so forth [15], [62]. The features
points between it and the external world. The interface specifi@haracterizing connectors are thigiterfaces types, semantics
the services (messages, operations, and variables) a componggnstraints evolution and non-functional propertie$ Each is
provides. In order to support reasoning about a component adéfined and motivated below.
the architecture that includes it, ADLs may also provide facilities |nterface — A connector’s interface is a set of interaction

for specifying component needs, i.e., services required of othgpints petween the connector and the components and other con-
components in the architecture. An interface thus defines complaciors attached to it. Since a connector does not perform any

tational commitments a component can make and constraints ggyjication-specific computations, it exports as its interface those

its usage. services it expects of its attached components. Connector inter-

Types —Component types are abstractions that encapsulafaces enable proper connectivity of components and their interac-
functionality into reusable blocks. A component type can béion in an architecture and, thereby, reasoning about architectural
instantiated multiple times in a single architecture or it may beonfigurations.

reused across ar <:h|t_ectures. Comp(_)n_ent type_s can be parameterl-ypes —Connector types are abstractions that encapsulate
ized, further facilitating reuse. Explicit modeling of types also

. - o) . component communication, coordination, and mediation deci-
aids understandability and analyzability of an architecture in th%tions. Architecture-level interactions may be characterized by
the properties of a type are shared by all of its instances.

_ complex protocols. Making these protocols reusable both within
Semantics —We define component semantics as a highand across architectures requires that ADLs model connectors as

level model of a component’s behavior. Such a model is needeghes. This is typically done in two ways: @gensibletype sys-

to perform analysis, enforce architectural constraints, and ensugms, defined in terms of interaction protocols, or as buitrio;

consistent mappings of architectures from one level of abstrageratedtypes, based on particular implementation mechanisms.

tion to another. Note that a component’s interface also allows aSemantics Similarly t N ¢ i
certain, limited degree of reasoning about its semantics. How- —olmiiarly to components, connector semantics

ever, the notion of semantics used in this paper refers strictly 9 defined ::15 a Elgh-level m(t)_del ofa conneclt_or?_ bef|1aV|(|)rf. Un:!ke
models of component behavior. components, whose semantics express application-level function-

i o _ ality, connector semantics entail specifications of (computation-
Constraints —A constraint is a property of or assertion jngependent) interaction protocols. ADLs may support modeling
about a system or one of its parts, the violation of which will rengt connector semantics in order to enable component interaction
der the system unacceptable (or less desirable) to one or mefiesiysis, consistent refinement of architectures across levels of

stakeholders [9]. In order to ensure adherence to intended compgysiraction, and enforcement of interconnection and communica-
nent uses, enforce usage boundaries, and establish dependengigsconstraints.

among internal parts of a component, constraints on them mus

t . .
be specified. Constraints — Connector constraints ensure adherence to

. . . intended interaction protocols, establish intra-connector depen-

'Evolu'.uon — As architectural building bIO,CkS' components dencies, and enforce usage boundaries. An example of a simple
will contmuously evolve. .(_:onjponent evolution can be Infor'g:md easily enforceable constraint is a restriction on the number of
mally dgflned as t.he modification 9f (a su'bset of) a Cqmponent&)mponents that interact through the connector. Establishing
properties, e.g., interface, behavior, or implementation. ADL dherence to more complex connector constraints (e.g., minimal

can ensure that. evolution happens In-a Systematic manner, oughput) may require access to information external to the
employing techniques such as subtyping of component types aaﬂ/en connector (e.g., a model of the attached components’
refinement of component features. dynamic semantics)

Non-Functional Properties —A component’s non-func-

t|0r_1al properties (e.g_., safety, S_ecu”ty' performan_c_e, p_Oftabll_Ity) 4. Although the comparison categories for components and connectors are
typically cannot be directly derived from the specification of itSdentical, they were derived and refined independently of each other.

6 of 24

Evolution — Analogously to component evolution, the evo- The differences between the two pairs of features are subtle,
lution of a connector is defined as the modification of (a subsgtrticularly in the case of dynamism. While keeping the above
of) its properties, e.g., interface, semantics, or constraints on thategorization in mind, in order to maintain the conceptual sim-
two. Component interactions in architectures are governed Ipficity of our framework and avoid confusion, we proceed by
complex and potentially changing and expanding protocols. Fuglescribing individual features; we include both notions of hetero-
thermore, both individual components and their configurationgeneity and dynamism under single respective headings. We
evolve. ADLs can accommodate this evolution by modifying omotivate and, where appropriate, define the configuration fea-
refining existing connectors with technigues such as incrementiires below.

information filtering, subtyping, and refinement. Understandable Specifications —©ne role of software
Non-Functional Properties —A connector's non-func- architecture is to serve as an early communication conduit for
tional properties are not entirely derivable from the specificatiodifferent stakeholders in a project and facilitate understanding of
of its semantics. They represent (additional) requirements fgfamilies of) systems at a high level of abstraction. ADLs must
correct connector implementation. Modeling non-functionathus model structural (topological) information with simple and
properties of connectors enables simulation of runtime behaviainderstandable syntax. The structure of a system should ideally
analysis of connectors, constraint enforcement, and selection log clear from a configuration specification alone, i.e., without
appropriate off-the-shelf (OTS) connectors (e.g., message buségving to study component and connector specifications.

and their mappings to processors. Compositionality — Compositionality, or hierarchical

)]) composition, is a mechanism that allows architectures to describe
3.1.3 Modeling Configurations software systems at different levels of detail: complex structure
. , . . havi licitl h
Architectural configurations or topologies, are connected and behavior may be exp icitly represented or they may.be
ablstracted away into a single component or connector. Situations

graphs of components and connectors that describe architectura o . ; .)
may also arise in which an entire architecture becomes a single

structure. This information is needed to determine whether

appropriate components are connected, their interfaces matgr? mponent in another, larger architecture. Such abstraction
pprop b ' rHechanisms should be provided as part of an ADLs modeling

connectors enable proper communication, and their combin% abilities
semantics result in desired behavior. In concert with models 6f " '

components and connectors, descriptions of configurations Refinement and Traceability —In addition to providing
enable assessment of concurrent and distributed aspects ofainhitects with semantically elaborate facilities for specifying
architecture, e.g., potential for deadlocks and starvation, perfoarchitectures, ADLs must also enable correct and consistent
mance, reliability, security, and so on. Descriptions of configurarefinement of architectures into executable systems and traceabil-
tions also enable analyses of architectures for adherence ity of changes across levels of architectural refinement. This view
design heuristics (e.g., direct communication links between conis supported by the prevailing argument for developing and using
ponents hamper evolvability of an architecture) and architecturdDLs: they are necessary to bridge the gap between informal,

style constraints (e.g., direct communication links between confboxes and lines” diagrams and programming languages, which

ponents are disallowed). are deemed too low-level for application design activities.
Characteristic features at the level of architectural configura- Heterogeneity —A goal of software architectures is to
tions fall in three general categories: facilitate development of large-scale systems, preferably with

* qualities of the configuration descriptiamderstandability, pre-existing components and connectors of varying granularity,
compositionality, refinement and traceabilisndheteroge- possibly specified in different formal modeling languages and

neity; implemented in different programming languages, with varying
* qualities of the described systeheterogeneityscalability ~ operating system requirements, and supporting different commu-
evolvability anddynamism nication protocols. It is therefore important that ADLsdpen

« properties of the described systetlynamism constraints i.e., that they p_rovide facilities for architectural specification and
andnon-functional propertie$ development with heterogeneous components and connectors.

Note that the three categories are not entirely orthogonal: hetero-Scalability — Architectures are intended to provide develop-
geneity and dynamism each appear in two categories. Heterogg#s with abstractions needed to cope with the issues of software
neity may be manifested in multiple employed formalisms ircomplexity and size. ADLs must therefore directly support speci-
configuration descriptions and multiple programming languagefécation and development of large-scale systems that are likely to
in system implementations. Anticipated dynamism is a systegrow further.

property in that the system may be architected specificgl!y to Evolvability — New software systems rarely provide
accommodate the (expected) dynamic c,hange; unanticipategsirely unprecedented functionality, but are rather “variations on
dynam|sm_ is @uality that refers to a system’s general suitability 5 theme ” An architecture evolvesraflectandenableevolution
for dynamic change. of a family of software systems. Since evolution (i.e., mainte-
nance) is the single costliest software development activity [18],
5. The term “quality” is used in the conventional, application-independensystem evolvability becomes a key aspect of architecture-based
manner, e.g., as defined by Ghezzi and colleagues [18]. The term “propertﬁjcevelopment_ ADLs need to augment evolution support at the

refers to the characteristics of an application introduced to address speci . -
requirements. level of components and connectors with features for their incre-

7 of 24

mental addition, removal, replacement, and reconnection in achitect to acknowledge it before continuing, or non-intrusively,
configuration. allowing the architect to view the feedback at his discretion.

Dynamism —Evolution, as we define it, refers to “off-line” Multiple Views — When defining an architecture, different
changes to an architecture (and the resulting system). Dynamisstakeholders (e.g., architects, developers, managers, customers)
on the other hand, refers to modifying the architecture and enaghay require different views of the architecture. The customers
ing those modifications in the systevhile the system is execut- may be satisfied with a high-level, “boxes-and-lines” description,
ing. Support for dynamism is important in the case of certaithe developers may want detailed (formal) component and con-
safety- and mission-critical systems, such as air traffic controhector specifications, while the managers may require a view of
telephone switching, and high availability public informationthe corresponding system development process. Providing the
systems. Shutting down and restarting such systems for upgradasst appropriate view to a given stakeholder and ensuring inter-
may incur unacceptable delays, increased cost, and risk [52]. View consistency are key issues to be addressed by an ADL tool-
support architecture-based run-time evolution, ADLs need tgit.
provide specific features fanodelingdynamic changes and tech-

. ! i 4 Analysis — Architectural descriptions are often intended to
nigues foreffectingthem in the running system.

) model large, distributed, concurrent systems. The ability to evalu-

Constraints — Constraints that depict dependencies in aate the properties of such systems upstream, at an architectural
configuration complement those specific to individual compotevel, can substantially lessen the cost of any errors. Given that
nents and connectors. Many global constraints are derived frofjany details are abstracted away in architectures, this task may
or directly depend upon local constraints. For example, corylso be easier than at source code level. Analysis of architectures
straints on valid configurations may be expressed as interactigas thus been a primary focus of ADL toolset developers.

constraints among constituent components and connectors, Whickh . . . '
. L . efinement —The importance of supporting refinement of
in turn are expressed through their interfaces and protocols; per-

formance of a system described by a configuration will dep(_:‘n%rchltectures across levels of detail was briefly argued above and

e : more extensively by Garlan [13] and Moriconi and colleagues
upon the performance of each individual architectural elemen o) L :

. : . . . [47]. Refining architectural descriptions is a complex task whose
safety of an architecture is a function of the safety of its constitu- :
ents correctness and consistency cannot always be guaranteed by for-

i .)) mal proof, but adequate tool support can give architects increased
Non-Functional Properties —Certain non-functional confidence in this respect.

properties are system-level, rather than individual component or . . .
Implementation Generation —The ultimate goal of any

connector properties. Configuration-level non-functional proper- desi d modeli d : d h
ties are needed to select appropriate components and connectd Eware esign and modeling endeavor is to produce the execut-

perform analysis, enforce constraints, map architectural buildin§ € sy;tem. An elegant arc_:hltectural model IS Of,l'm'ted .value
blocks to processors, and aid in project management nless it can be converted into a running application. Doing so
’ ' manually may result in many problems of consistency and trace-

ability between an architecture and its implementation. It is

therefore desirable, if not imperative, for an ADL toolkit to pro-
The motivation behind developing formal languages for archivide tools to assist in producing source code.

tectural description is that their formality renders them suitable Dynamism —We have argued for the need to model

for reasoning and manipulation by software tools. A supportingynamic changes at the level of architecture. However, an ADL’s
toolset that accompanies an ADL is, strictly speaking, not a paghility to model dynamic changes is insufficient to guarantee that
of the Ianguage. However, the usefulness of an ADL is direCt'M‘]ey will be app“ed to the executing system in a property-pre-
related to the kinds of tools it provides to support architecturaderving manner. Software tools are needed to analyze the modi-
design, analysis, evolution, executable system generation, andf& architecture to ensure its desirable properties, correctly map
forth. The importance of architectural tools is reflected in the Onthe Changes expressed in terms of architectural constructs to the
going effort by a large segment of the community to identify themplementation modules, ensure continuous execution of the
components that comprise a canonical “ADL toolkit” [17]. application’s vital subsystems and preservation of stating

Although the results of this work are still preliminary, severakhe modification, and analyze and test the modified application
general categories have emerged. They reflect the kinds of taghile it is executing.

support commonly provided by existing architectural approaches:

active specification, multiple views, analysis, refinement, imple3 2 Differentiating ADLSs from Other Languages
mentation generation, and dynamism. Each is discussed below.

Active Specification —ADL tools provide active specifica- In order to clarify whats an ADL, it may be useful to point
tion support by reducing the space of possible design optiogit several notations that, though similar, mo¢ ADLs accord-
based on the current state of the architecture. Such tools proviig to our definition: high-level design notations, MILs, program-
design guidance and can significantly reduce a software architing languages, object-oriented (OO) modeling notations, and
tect's cognitive load. They can be either proactive, by suggestirfgrmal specification languages.
courses of action or disallowing design options that may result in The requirement to modatonfigurations explicitly distin-
undesirable design states, or reactive, by informing the architegtiishes ADLs from some high-level design languages. Existing
of such states once they are reached during design. Active spdaRguages that are sometimes referred to as ADLs can be grouped
fication tools can deliver their feedback intrusively, forcing thento three categories based on how they model configurations:

3.1.4 Tool Support for Architectural Description

8of 24

e implicit configuration languagesmodel configurations users, then that language should aspire to reflect those intentions
implicitly through interconnection information that is dis- and practices [65]. We believe this to be a key issue and one that
tributed across definitions of individual components andirgues against considering a notation like UML an ADL: a given
connectors; language (e.g., UML) offers a set of abstractions that an architect

« in-line configuration languageasodel configurations explic- Uses as design tools; if certain abstractions (e.g., components and
itly, but specify component interconnections, along with anyconnectors) are buried in others (e.g., classes), the architect’s job

interaction protocols, “in-line;” is made more (and unnecessarily) difficult; separating compo-
« explicit configuration languagemodel both components and nents frc_)m connectors, raising them both to_ visibility as top—_le\(el
connectors separately from configurations. abstractions, and endowing them with certain features and limita-

The first category, implicit configuration languages, are, by thioNS also raises them in the consciousness of the designer.
definition given in this papenot ADLs, although they may serve An ADL typically subsumes a formal semantic theory. That
as useful tools in modeling certain aspects of architectures. TWBeory is part of the ADL's underlying framework for characteriz-
examples of such languages are LILEANNA and ArTek. Inng architectures; it influences the ADL's suitability for modeling
LILEANNA, interconnection information is distributed among Particular kinds of systems (e.g., highly concurrent systems) or
the with clauses of individual packages, package bindimgsy(Particular aspects of a given system (e.g., its static properties).
construct), and compositionmakd. In ArTek, there is no con- Examples of formal specification theories are Statecharts [23],
figuration specification; instead, each connector specifies compartially-ordered event sets [33], communicating sequential pro-
nent ports to which it is attached. cesses (CSP) [24], model-based formalisms (e.g., chemical

The focus orconceptuakrchitecture and explicit treatment of aPstract machine, or CHAM [25], Z [67]), algebraic formalisms
connectorsas first-class entities differentiate ADLs from MiLs (€-9- Obj [19]), and axiomatic formalisms (e.g., Anna [30]). Of
[55], programming languages, and OO notations and Ianguag&e aboye-mentloned formal notatloqs, Z has been demonstrated
(e.g., Unified Modeling Language, or UML [57], [58]). MILs appropriate fpr modeling only certain aspect_s of architectures,
typically describe thaisesrelationships among modules in an such as archlt_ectural style rules [1], [42]. Partially-ordered event
implementedystem and support only one type of connection [4]S€tS; CSP, Obj, and Anna have already been successfully used by
[64]. Programming languages describe a system’s implement8XiSting modeling languages (Rapide, Wright, and LILEANNA,
tion, whose architecture is typically implicit in subprogram defi-"eéSPectively).
nittons and calls. Explicit treatment of connectors also Modeling capabilities of the remaining two notations, State-
distinguishes ADLs from OO languages, as demonstrated in [34fharts and CHAM, are somewhat similar to those of ADLs.

It is important to note that there is less than a firm boundarfthough they do not express systems in terms of components,
between ADLs and MILs. Certain ADLs, e.g., Wright andponnectors, and conflgurat_lons per se, their features may be cast
Rapide, model components and connectors at a high level that mold and they have !ndeed beep referred to as gxample_s of
abstraction and do not assume or prescribe a particular relatiohPLS [8], [25]. We discuss in the remainder of the section why it
ship between an architectural description and an implementatidf§.in@ppropriate to do so.

We refer to these languagesiaplementation independer®n

the other hand, several ADLs, e.g., Weaves, UniCon, and Metal3,2.1 Statecharts

require a much higher degree of fidelity of an architecture to its

implementation. Components modeled in these languages areStatecharts is a modeling formalism based on finite state
directly related to their implementations, so that a module intefMachines (FSM) that provides a state encapsulation construct,
connection specification may be indistinguishable from an archfiupport for concurrency, and broadcast communication. To com-
tectural description in such a language. Thes@gpiementation ~ Pare Statecharts to an ADL, the states are viewed as components,
constraininglanguages. transitions among them as simple connectors, and their intercon-

We have also recently shown that an OO language, such ggcti_ons as configgratiops. Howev_er, Stafcecharts doe_s not model
UML, can be used to model software architectures if it Suppor@rchltec_tural configurations explicitly: mtercon_nectlons and
certain extensions [41], [60]. These extensions are used to repHaleractions among a set of concurrently executing components
sent architectural abstractions that either differ (e.g., topologic&f® IMPplicit inintra-component transition labels. In other words,

constraints) or do not exist (e.g., connectors) in OO desig@S Was the case with LILEANNA and ArTek, the topology of an
Extending UML in such a manner is clearly useful in that it Sup‘_‘archltecture" described as a Statechart can only be determined

ports mapping of an architecture to a more familiar and widele studying its constituent components. Therefore, Statecharts is
used notation, therefore facilitating broader understanding of tHéPt an ADL.

architecture and enabling more extensive tool support for manip- There is an even deeper issue in attempting to model architec-
ulating it. However, it is unrealistic to expect that UML could betures as FSMs: although it may be useful to represent component
extended to model every feature of every ADL; our initial experiOr connector semantics with Statecharts, it is doubtful that an
ence indeed confirms this [60]. Moreover, although UML mayadequate architectural breakdown of a system can be achieved
provide modeling power equivalent to or surpassing that of affom a state-machine perspective. Harel [23] agrees with this
ADL, the abstractions it provides will not match an architect'sview, arguing that

mental model of the system as faithfully as the architects ADL one has to assume some physical and functional

of choice. If the primary purpose of a language is to provide a description of the system, providing, say, a hierarchical
vehicle of expression that matches the intuitions and practices of decomposition into subsystems and the functions and

9of 24

activities they support... Statecharts can then be used to In this section, we discuss the support provided by ADLs for dif-
control these internal activities... We assume that this ferent aspects of components.
kind of description is given or can be produced using an

existing method. 4.1.1 Interface

3.2.2 Chemical Abstract Machine All surveyed ADLs support specification of component inter-

faces. They differ in the terminology and the kinds of information
In the chemical abstract machine (CHAM) approach, an arch{-h e y 9y

. X X y specify. For example, an interface point in SADL or Wright
tecture is modeled as an abstract machine fashioned after Chefg'aport, and in UniCon alayer On the other hand, in C2 the

cals and chemical reactions. A CHAM is specified by definin fire interf is provided throuah a sinal it individual inter
molecules, their solutions, and transformation rules that speci%)'I € Intertace 1S provide ough a singie po N ual Inter-
ace elements aremessages Weaves combines the two

how solutions evolve. An architecture is then specified with pro- ’ ;]
cessing, data, and connecting elements. The interfaces of pARProaches by allowing multiple componpotts each of which

cessing and connecting elements are implied by (1) thef@n participate in the exchange of interface elementshjects
topology and (2) the data elements their current configuration ADLs typically distinguish between interface points that refer
allows them to exchange. The topology is, in turn, implicit in ao provided and required functionality. MetaH and Rapide make
solution and the transformation rules. Therefore, even thoughe additional distinction between synchronous and asynchro-
CHAM can be used effectively to prove certain properties ofous interfaces. For examplprovides and requires interface
architectures, without additional syntactic constructs it does n@nstituents in Rapide refer to functions and specify synchronous
fulfill the requirements to be an ADL. communication, whilén and out actionsdenote asynchronous
events.

Interface points are typed in a number of ADLs: ACME,

This section presents a detailed comparison of existing ADLéesop., Darwin, MetaH, SADL, and UmCor.L UniCon ;upports a
redefined set of common player types, includRmutineDef

along the dimensions discussed in Section 3.1. We highlight rep-="" : ;
resentative approaches and support our arguments with examg‘\@utmec""IJ GlobalDataDef GlobalDataUse ReadFile Write-
ADL specifications. The chosen examples are deliberately keptle; RPCDef andRPCCall On the other hand, ports in C2 and
simple. They are intended to give the reader a flavor of the kind/eaves are type-indifferent in order to maximize the flexibility of
of solutions an ADL may provide for a particular problem, indednterconnection. Weaves ports perform wrapping and unwrapping
pendently of the ADL's overall syntax and semantics. of data objects by means efivelopeswhich hide the types of

Our decision to provide multiple examples instead of a singléhe underlying data objects, while C2 ports are designed to han-
representative example is motivated by the the inability of thdle any C2 messages.
research community to identify a model problem for which all Finally, Wright and UniCon allow specification of expected
ADLs are likely to be well suited [68]. Thus, selecting any on&omponent behavior or constraints on component usage relevant
candidate problem would likely draw the (justified) criticism of, gach point of interaction. For example, UniCon allows specifi-
focusing on the strengths of only certain languages. This point iSy;io of the number of associations in which a player can be
related to the discussion from Section 3: different ADLs focus 0&?volved. Fig. 2 depicts the constraint that it player of the

different application domains, architectural styles, or aspects . . - .
. S . : treamintype is bound to standard input and participates in
the architectures they model. This is certainly the case with the o . .
actly one association in a given architecture.

ADLs we have studied, and which represent a large cross-sectiof
of existing work in the area, as shown in Tahle 1

4 COMPARISON OF ADLs

PLAYER input IS StreamiIn
4.1 ADL Support for Modeling Components NASEoee ()
SIGNATURE (“line”)

Each surveyed ADL models components. ACME, Aesop, C2, E,\FI’S:?]FT)E:ND'NG (stdin)
Darwin, SADL, UniCon, and Wright share much of their vocabu-
lary and refer to them simply @@mponentsin Rapide they are Fig. 2. Specification of a component player in UniCon.
interfaces in Weavestool fragmentsand in MetaH processes

TABLE 1
ADL SCOPE ANDAPPLICABILITY
ADL ACME Aesop C2 Darwin MetaH Rapide SADL UniCon Weaves Wright
Architectural |Specification JArchitectures JArchitectures JArchitec- Modeling and]Formal refinedGlue code Data-flow archijModeling and
interchange, Jof architec- Jof highly-dis- Jof highly-dis- Jtures in the Jsimulation of ment of archi{generation fofjtectures, charaganalysis (spe-
predomi- tures in spe- |tributed, tributed sys- Jguidance, [Jthe dynamic [tectures interconnect- Jterized by high{cifically, dead-
Focus nantly at the [cific styles evolvable, angtems whose Jnavigation, Jbehavior across levels fing existing Jvolume of datajlock analysis)
structural levg dynamic sys- jJdynamism is Jand control Jdescribed by Jof detail components fjand real-time Jof the dynamig
tems guided by (GN&C) an architecturp using com- jrequirements Jbehavior of
strict formal jdomain mon interac- jon its process- jconcurrent sys-
underpinnings tion protocolsjing tems

10 of 24

_ type Application is interface
port DataRead = get bataRead [l '\/ extern action Request(p : params);
. .) . public action Results(p : params);
Fig. 3. Interaction protocol for a component port in Wright: behavior ' _
- denotes event transitions, a successfully terminating (g'\g 'r;_ String) Receive(?M) => Results(?M);;
process, [| non-deterministic choice, and || deterministic end Application;
choice.

Fig. 4. A Rapide component’s behavior specified with posets.

Wright specifies the protocol of interaction at each port in CSBvent patterns are used both as triggers and outputs of compo-
[24]. In the example given in Fig. BataReads a simple input pent state transitions. Fig. 4 shows an example of a simple Rapide

(read only) porf component with a causal relationship between events: when the
Application component observesReceiveevent, it generates a

4.1.2 Types Resultsevent in response; the two events have the same string
parameter.

All of the surveyed ADLs distinguish component types from
instances. Rapide does so with the help of a separate types lan-
guage [31]. Weaves distinguishes betwsecketsand tool frag- 4.1.4 Constraints
ments that populate them. With the exception of MetaH and
UniCon, all ADLs provide extensible component type systems. All ADLs constrain the usage of a component by specifying its
MetaH and UniCon support only a predefined, built-in set ofnterface as the only legal means of interaction. Formal specifica-
types. MetaH component types arecessmacrg mode system tion of component semantics further specifies relationships and
and application” Component types supported by UniCon aredependencies among internal elements of a component. Several
Module Computation SharedData SeqFile Filter, Process additional means for constraining components are common.

SchedProcesandGeneral _ _ _ A number of ADLs provide stylistic invariants (Aesop, C2,
Several ADLs (ACME, Darwin, Rapide, SADL, and Wright) sApL, and Wright). An example stylistic invariant is C2's
make explicit use of parameterization of component interface Sigéquirement that a component have exactly two communication
natures. This is typically done in the manner similar to progra Sorts, one each on its top and bottom sides. A component can

ming languages such as Ada and C++. Rapide and Wright al 50 be constrained via attributes. Fig. 2 shows how a UniCon

allow the behavior associated with a particular type to be param((E:‘(—anonent is constrained by restricting the number of associa-

terized. Rapide does so by specifying event patterns, discusséd . . - .
below. Wright allows parameterization of a component by itélons in which its players can participate. MetaH also constrains

computation a CSP specification that defines the component'Lhe implementation and usage of a component by specifying its

behavior. This allows the architect to vary the behavior of a conflon-functional) attributes, such BzecutionTimeDeadling and
ponent in a systematic manner. Criticality. Finally, Rapide enables specification of pattern con-

straints on event posets that are generated and observed from a
component’s interface. In the example shown in Fig. 5, the con-
straint implies that all, and only, messages taken in by the

All ADLs support specification of component semantics,Resourcecomponent are delivered.
although to varying degrees. The ADLs’ underlying semantic o
models range from expressing semantic information in compo- ty%ibliezoctt’{gﬁ 'SRg‘ggir\fg‘z,‘fAsg : String):
nent property lists (UniCon) to the models of dynamic compo- extern action Results(Msg : String);
nent behavior (Rapide and Wrigft)Other points along this — “onoyant
spectrum are arbitrarily complex behavioral specifications that ((?S in String)(Receive(?S) -> Results(?S)))"(*~);

. . K end Resource;
are treated as uninterpreted annotations (ACME); an accompany-
ing language for modeling algorithms in the ADL's domain Fig. 5. A pattern constraint in Rapide.
(MetaH); specification of static component semantics via invari-
ants and operation pre- and post-conditions (C2); and models of
interaction and composition properties of composite componeni$ 1.5 Evolution
expressed in the-calculus [44] (Darwin).

Rapide introduces a unique mechanism for expressing both aA number of ADLs view and model components as inherently
component'sehaviorand its interaction with other components: static. For example, MetaH and UniCon define component types
partially ordered sets of events (posets). Rapide uses event pag-enumeration, allowing no subtyping, and hence no evolution
terns to recognize posets. During poset recognition, free variablegpport; Weaves considers tool fragment evolution outside its
in a pattern are bound to specific matching values in a posefope. Several ADLs support component evolution via subtyping.

They typically support a limited notion of subtyping or rely on

6. In all examples, we adhere to each ADL's presentation conventions (naminthe mechanisms provided by the underlying programming lan-
Cagl.w/ﬂlsz al\ileotr;’Hh:ngehd“?(? sgtecm)fy both the software and the hardware architect #&'29€: For example, ACME supports strictly structural subtyping
of an applicationsystemis a hardware construct, whitplication pertains to ~ with its extendsfeature, while Rapide evolves components via
both. Fgg_o inheritance. SADL allows the specification of high-level

8. As discussed in the preceding section, Wright uses CSP to specify a com . o))
nent'scomputation properties that must be satisfied by subtypes: the example in Fig.

4.1.3 Semantics

11 of 24

Local_Client : TYPE = { ¢ : Client | Local(c) } 4.1.7 Summary of ADL Components

Fig. 6. A subtype specification in SADL. Overall, surveyed ADLs provide comprehensive support for

modeling components. All of them regard components as first-

6 specifies thatocal_Clientis the subtype o€lientsuch that all class entities. Furthermore, all model interfaces and distinguish
of its instances satisfy the predicatecal. between component types and instances. On the other hand, a

Aesop and C2 provide more extensive component subtypin@ajority of the ADLs do not support evolution or non-functional
support. Aesop enforces behavior-preserving subtyping to creddoperties. It is illustrative that Aesop is the only ADL that pro-
substyles of a given architectural style. An Aesop subclass muggles at least some support for each of the six classification cate-
provide strict subtyping behavior for operations that succeed, b@Pries and that, of the five ADLs that support five of the
may also introduce additional sources of failure with respect tgategories, C2 and Rapide do not model non-functional proper-
its superclass. C2, on the other hand, supports multiple subtypifi§S: @1d MetaH, UniCon, and Weaves do not support evolution.
relationships among componentsne, interface betavior, and very ADL supports or allows a’F least _four_ of _the Six categories.
implementation [39], [42]. Different combinations of these reIa—A more complete summary of this section is given in Table 2.
tionships are specified using the keywoetsl and not. Fig. 7
demonstrates two possible subtyping relationshigsii_1pre- 4.2 ADL Support for Modeling Connectors

serves (and possibly extends) the behavior of the component del) i ; d und)
Matrix, but may change its interface and implementation; ADLs model connectors in various forms and under various

Well_2s subtyping relationship mandates that nitust alter names. For example, ACME,_A_\esop, C2, SADL, UniCon, and
.) Wright model connectors explicitly and refer to thentasnec-
Matrix’s interface: -
tors. Weaves also models connectors explicitly, but refers to them

component Well_1 is subtype Matrix (beh) _ astransport serwcengp@e and Metakonnectionsind Darwin
component Well_2 is subtype Matrix (beh \and \not int) bindingsare modeled in-line, and cannot be named, subtyped, or
Fig. 7. Specification of component subtypes in C2. reused (i.e., connectors are not first-class entities). Darwin and

Rapide do allow abstracting away complex connection behaviors

)) o into “connector components.” In this section, we compare exist-
Rapide and SADL also provide features for refining compo;

ng ADLs with respect to the support they provide for different
nents across levels of abstraction. This mechanism may be usggbects of connectors.
to evolve components by explicating any deferred design deci-
§|ons, which is somewhat similar tp e>§ten.d|ng inherited beha.wo&z'l Interface
in OO languages. Indeed, subtyping is simply a form of refine-
ment in a general case. This is, however, not true of Rapide andjn general, only the ADLs that model connectors as first-class
SADL, both of which place additional constraints on refinemengntities support explicit specification of connector interfaces.
maps in order to prove or demonstrate certain properties of arciitost such ADLs model component and connector interfaces in
tectures. Refinement of components and connectors in Rapigiee same manner, but refer to them differently. Thus, connector
and SADL is a byproduct of the refinement of configurationsinterface points in ACME, Aesop, UniCon, and Wright mles,
their true focus. Therefore, we will defer further discussion ofvhich are named and typed. Explicit connection of component

this issue until Section 4.3. ports (players in UniCon) and connector roles is required in an
architectural configuration. Wright supports CSP specifications
4.1.6 Non-Functional Properties of each role’s interaction protocol in the same manner as port

protocols (see Fig. 3). This allows compatibility analysis of con-
Despite the need for and benefits of specifying non-functiondlected ports and roles.
properties, there is a notable lack of support for them in existing In UniCon, each role may include optional attributes, such as
ADLs. ACME, Aesop, and Weaves allow specification of arbi-the type of players that can serve in the role and minimum and
trary component properties and/or annotations. However, none mfaximum number of connections. UniCon supports only a pre-
them interprets such properties, nor do they make direct use @éfined set of role types, includiSpurce Sink ReadeyReadeg
them. Writer, Writeg Definer andCaller. An example UniCon role is

MetaH and UniCon provide more advanced support for modeB0OWn in Fig. 8. It belongs to tiépe connector type and is con-
ing non-functional properties. They require such information tgtrained to be connected to at most a single player. Note that,
analyze architecture for real-time schedulability (both ADLS) andimllke the player- s_hown n Fig. 2, which must participate in
reliability and security (MetaH). Both also use source code Ic)Cae_xactlyone association, this role does not have to be connected to
tion attributes for implementation generation. Several representg—player'
tive non-functional properties in MetaH arBourceName ROLE output IS Source
SourceFile ClockPeriod Deadling and Criticality. UniCon E,\'}/'DAi)égStNNS @
allows specification ofPriority, Library, ImplType (source

object executabledata, orwhateve), andProcessor Fig. 8. Specification of a connector role in UniCon.

TABLE 2
ADL SuUPPORT FORMODELING COMPONENTS

12 of 24

Feature i
Characteristics Interface Types Semantics Constraints Evolution Non Funcyonal
ADL Properties
Component interface points are|extensible type sys- [no support; can |via interfaces only structural subtyjallows any attribute
ACME implementation |ports tem; parameterizationuse other ADLS’ ing via the in property lists, but
independent enabled with tem- | semantic models extenddeature |does not operate o
plates in property lists them
Component interface points are|extensible type system (optional) style}via interfaces and seman-|behavior-presen/-allows association df
Aeso implementation |inputandoutput specific languagegtics; stylistic invariants ing subtyping arbitrary text with
P independent ports for specifying components
semantics
Component interface exported |extensible type system component invaviia interfaces and seman-| heterogeneous [none
implementation |through top and bot- ants and operatioftics; stylistic invariants subtyping
Cc2 independent tom ports; interface pre- and postcon-
elements arero- ditions in 1st orde
vided andequired logic
i Component interface points are|extensible type sys- |T-calculus via interfaces and semantics none none
Darwin implementation |servicegprovided |tem; supports parame-
independent; andrequired) terization

attributes needed
for real-time schedy

ControlH for mod1 via interfaces and seman-
eling algorithms in tics; modes; non-functionall

Processimple-
mentation con-

interface points are
ports

Predefined, enumer-
ated set of types

none

MetaH straining the GN&C attributes lability, reliability,
domain; imple- and security analysjs
mentation seman
tics via paths

Interface imple- |interface points are|extensible type sys- |partially ordered |via interfaces and seman-|inheritance none
Rapide mentation inde- | constituentgpro- tem; contains a typegevent sets (posetslics; algebraic constraints ggstructural sub-
p pendent vides requires sublanguage; sup- component state; pattern |typing)
action, andservice |ports parameterizatian constraints on event posets
Component interface points are|extensible type sys- [none via interfaces; stylistic subtyping by requires component
implementation |input and output |tem; allows parame- invariants constraining modification (see
SADL independent; ports (iportsand terization of supertypes; Section 4.3.9)
oportg component signaturels refinement via
pattern maps
Component interface points are|predefined, enumer- [event traces in |via interfaces and seman-|none attributes for sched-
UniCon implementation |players ated set of types property lists tics; attributes; restrictions ulability analysis
constraining on players that can be prot
vided by component types
Tool fragments |interface points are|extensible type sys- |partial ordering |via interface and semantics none allows associatipn of
Weaves implementation |readandwrite ports |tem; types are compoever input and arbitrary, uninter-
constraining interface elements |nentsockets output objects preted annotations
areobjects with components
Component interface points are|extensible type sys- |not the focus; protocols of interaction for|via different none
Wright implementation |ports; port interac- |tem; parameterizable allowed in CSP | each port in CSP; stylistic | parameter instar)-
d independent; tion semantics speginumber of ports and invariants tiations

fied in CSP

computation

SADL, C2, and Weaves model connector interfaces differentlgonnector, such as its arity and the constraints on its usage, is
from component interfaces. A SADL connector is defined as pagiven in the definition of its style (Fig. 9b).

of the design vocabulary for a particular architectural style. The The interfaces of C2 and Weaves connectors are generic: the
specification of the connector in an architecture only specifies th@&nnectors are indifferent to the types of data they handle; their
type of data the connector supports (e.g., the connector declaig@din task is to mediate and coordinate the communication among
in Fig. 9a expects a token sequence). Other information about themponents. Additionally, a C2 connector can support an arbi-
trary number of components. In C2, this feature is referred to as
context-reflectionthe interface of a connector is determined by
(potentially dynamic) interfaces of components that communi-
cate through it, as depicted in Fig. 10.

()
CONNECTORS
ch : DF_Chanl <SEQ(token)>
CONFIGURATION
tok_flow : CONNECTION = Connects(ch, oport, iport)

(b)
DF_Chanl : TYPE <= CONNECTOR
Connects : Predicate(3)
connects_argtype_1 : CONSTRAINT =

(A X)(Ny)(\ 2) [Connects(x,y,z) => DF_Chanl(x)]
connects_argtype_2 : CONSTRAINT =

(A X)(Ny)(N\ 2) [Connects(x,y,z) => Outport(y)]
connects_argtype_3 : CONSTRAINT =

(A X)(Ny)(\\ z) [Connects(x,y,z) => Inport(z)]

4.2.2 Types

Only ADLs that model connectors as first-class entities distin-
guish connector types from instances. This excludes Darwin,
MetaH, and Rapide. Although MetaH does not support connector
types, it does define three broad categories of connecports:
connections, which connect ant port of one component to an
in port of anothergventconnections, which connect outgoing
events to incoming events (event-to-event) or to their recipient
components (event-to-process and event-to-mode);egoiva-

Fig. 9. SADL connector interfaces. (a) Definition and instantiation
of a connector in the specification of a SADL architecture. (b)
Specification of the connector's type in the definition of the
dataflow style; all connectors of the DF_Chanltype will support
interactions between two components.

13 of 24

(@ (b) (©)
— onn — [Conn

Fig. 10. C2 connectors have context reflective interfaces. Each C2 connector is capable of supporting arbitrary addition, removal, and
reconnection of any number of C2 components. (a) Software architect selects a set of components and a connector from a design
palette. The connector has no communication ports, since no components are attached to it. (b-d) As components are attached to the
connector to form an architecture, the connector creates new communication ports to support component intercommunication.

lenceconnections, which specify objects that are shared amorsgich constraints on them. Implementation and usage of connec-
components. tors is further constrained in those ADLs that model connector

ACME, Aesop, C2, SADL, and Wright base connector typesemantics.
on interaction protocols. UniCon, on the other hand, only allows Aesop, C2, SADL, and Wright also impose stylistic invariants,
connectors of prespecified enumerated typgse FilelO, Pro- such as C2’s restriction that each connector port may only be
cedureCal] DataAccess PLBundlef RemoteProcCall and attached to a single other port. UniCon restricts the number of
RTSchedulerACME and SADL also provide parameterization component players attached to a connector role by usirdithe
facilities that enable flexible specification of connector signature€onnsandMaxConnsattributes. Additionally, the types of play-
and of constraints on connector semantics. Similarly to its coners that can serve in a given role are constrained in UniCon via
ponents, Wright allows a connector to be parameterized by thlse Acceptattribute and in Wright by specifying interaction pro-
specification of its behavioglue). tocols for the role (see Fig. 11). For example,dtgutUniCon

role from Fig. 8 can be constrained to accepStieaminplayer

4.2.3 Semantics of theFilter component type (see Fig. 2) as follows:

It is interesting to note that ADLs that do not model connectors ROLE output IS Source
as first-class objects, e.g., Rapide, may model connector seman- Xééggygzﬁtg.)sneamm)
tics, while languages that do model connectors explicitly, such as END input
ACME, do not always provide means for defining their seman-_ o)
tics. ADLs tend to use a single mechanism for specifying th&'d: 11. Constraining a UniCon connector role to accept a

. ecific component player.

semantics of both components and connectors. For examplsep,
Rapide uses posets to describe communication patterns among its
components; Wright models conneogtue and event trace spec- :
ifications with CSP, as shown in Fig. 11; and UniCon aIIows4'2'5 Evolution
specification of semantic information for connectors in property ADLs that do not model connectors as first-class objects (Dar-
lists (e.g., a real-time scheduling algorithm or path traces throughin, MetaH, and Rapide) also provide no facilities for their evo-
real-time code). Additionally, connector semantics in UniCon arg@ution. Others focus on configuration-level evolution (Weaves) or
implicit in their (predefined) connector types. For exampleprovide a predefined set of connector types with no language fea-
declaring a connector to be mpe implies certain functional tures for evolution support (UniCon).
properties. Several ADLs employ identical mechanisms for connector and

Several ADLs use a different semantic model for their connecomponent evolution: ACME supports structural connector sub-
tors than for components. For example, as demonstrated in Fig.t§ping, Aesop supports behavior preserving subtyping, and
SADL provides a constraint language for specifying style-speSADL supports subtyping of connectors and their refinements
cific connector semantics. C2 models a connector's message fikeross styles and levels of abstraction. C2 connectors are inher-
tering policy:message_sinkio_filtering message_filteringand ently evolvable because of their context-reflective interfaces; C2
prioritized. Finally, Weaves employs a set of naming conventiongonnectors also evolve by altering their filtering policies. Finally,
that imply its transport services’ semantics. For example, a siWright supports connector evolution via parameterization,
gle-writer, single-reader queue transport service is nameghere, e.g., the same connector can be instantiated with a differ-
Queue_1 1 entglue

4.2.4 Constraints 4.2.6 Non-Functional Properties

With the exception of C2 and Weaves, whose connector inter- UniCon is the lone ADL that supports explicit specification of
faces are a function of their attached components (se®n-functional connector properties, using such information to
Section 4.2.1), ADLs that model connectors as first-class objectmalyze an architecture for real-time schedulabilityStisedPro-
constrain their usage via interfaces. None of the ADLs that specessconnector has aAlgorithm attribute. If the value oAlgo-
ify connections in-line (Darwin, MetaH, and Rapide) place anyithm is set to RateMonotonic UniCon uses trace, period,

14 of 24

execution time, and priority information for schedulability analy-4.3 ADL Support for Modeling Configurations
sis. As with their components, ACME, Aesop, and Weaves allow

s . . Explicit architectural configuration facilitates communication
specification of arbitrary, but uninterpreted connector annota- . :
tions among a system’s many stakeholders, who are likely to have var-

ious levels of technical expertise and familiarity with the problem
at hand. This is accomplished by abstracting away the details of
individual components and connectors and representing the sys-
tem’s structure at a high level. In this section, we discuss the key

The support provided by the ADLs for modeling connectors igspects of explicit configurations and compare surveyed ADLs
considerably less extensive than for components. Three ADlgith respect to them.

(Darwin, MetaH, and Rapide) do not regard connectors as first-

class entities, but rather model them in-line. Their connectors al 3.1 Understandable Specifications
always specified as instances and cannot be manipulated durin
design or reused in the future. Overall, their support for conne%
tors is negligible, as can be observed in Table 3.

4.2.7 Summary of ADL Connectors

gConﬁguration descriptions iim-line configuration ADLge.g.,
apide) tend to be encumbered with connector details. On the
other handgexplicit configuration ADLge.g., Wright) have the

All ADLs that model connectors explicitly also model their hest potential to facilitate understandability of architectural struc-
interfaces and distinguish connector types from instances. It igre. Clearly, whether this potential is realized or not will also
interesting to note that, as in the case of components, support ttgpend on the particular ADL's syntax. For example, UniCon
evolution and non-functional properties is rare, and that Aesop falls in the latter category, but it allows the connections between
again the only ADL that provides at least some support for eagiayers and roles to appear in any order, possibly distributed

classification category. A more complete summary of this section
is given in Table 3.

TABLE 3
ADL SUPPORT FORMODELING CONNECTORS
Feature: i
Characteristics Interface Types Semantics Constraints Evolution Non Funcgonal
ADL Properties
Connector explicit interface points are|extensible type sys- [no support; can |via interfaces and |structural sub-|allows any
ACME roles tem, based on proto-| use other ADLs’ |structural for type |typing via the |attribute in prop-
cols; parameterizationsemantic models |instances extenddeature|erty lists, but does
via templates in property lists not operate on the
Connector explicit interface points are|extensible type sys- |(optional) seman-|via interfaces and |behavior-pre- |allows association
Aesop roles tem, based on proto-|tics specified usingsemantics; stylistic | serving subtyptof arbitrary text
cols Wright invariants ing with connectors
Connector explicit interface with each | extensible type sys- |partial semantics |via semantics; styligcontext-reflec-|none
component via a setem, based on proto-|specified via mesttic invariants (each |tive interfaces;
C2 arateport; interface |cols sage filters port participates in |evolvable fil-
elements arero- one link only) tering mecha-
vided andrequired nisms
) Binding in-line; no none; allows “con- |none none none none none
Darwin explicit modeling of nection components”
component interactions
Connectionin-line; none none; supports threg none none none none
MetaH allows connections to be general classes of can-
optionally named nections: port, event,
and equivalence
Connectionin-line; none; allows “con- [none posets; condi- |[none none none
Rapide complex reusable con- | nection components” tional connections
Ir_]ectors only via “connec-
tion components”
Connector explicit connector signatureg extensible type sys- |axioms in the contvia interfaces; stylistsubtyping; requires connecto
SADL specifies the sup- |tem; parameterized |straint language |tic invariants connector | modification (see
ported data types |signatures and con- refinement via|Section 4.3.9)
straints pattern maps
Connector explicit interface points are|predefined, enumer- [implicit in connec1via interfaces; none attributes for
: roles ated set of types tor's type; seman- restricts the type of schedulability ana
UniCon ticinformation can players that can be ysis
be given in prop- |used in a given role
erty lists
Transport services interface points are | extensible type sys- |via naming con- |via interface none allows associatiq
explicit the encapsulating |tem; types are conneprentions of arbitrary, unin-
Weaves socketpads tor sockets terpreted annota-
tions with
transport services
Connector explicit interface points are|extensible type sys- |connectoglue via interfaces and |via different [none
: roles role interac- |tem, based on proto-| semantics in CSP semantics; protocolsparameter
Wright tion semantics specieols; parameterizable of interaction for Instantiations
fied in CSP number of roles and each role in CSP;
glue stylistic invariants

15 of 24

USES p1 PROTOCOL Unix-pipe component Composite {

USES sorter INTERFACE Sort-filter provide provserv;

CONNECT sorter.output TO pl.source require regserv;

USES p2 PROTOCOL Unix-pipe inst

USES printer INTERFACE Print-filter C1: CompTypel;

CONNECT sorter.input TO p2.sink C2: CompType2;
bind

The two provserv -- C1.pserv;

Fig. 12. Configuration specification in UniCon. C2.rserv — regserv;

connections are separated by component and connector
instantiations. All instantiations in this figure (preceded by the
USES keyword) are trivial; UniCon also allows specification of -
component and connector instance attributes, which would Composite
further obscure the structure of this configuration.

among individual component and connector instantiations, as provser

shown in Fig. 12.
Several languages provide a graphical notation as another
means of achieving understandability. An example of an architec- regser
ture modeled using C2’s graphical notation was shown in Fig. 10.
A graphical architectural description may actually hinder underig. 13. Top: a Darwin composite component. Bottom: graphical
standing unless there is a precise relationship between it and thiew of the component. Definitions of basic components C1 and
underlying model, i.e., unless the textual and graphical descrig=2, Which themselves may be composite, are omitted for
tions are interchangeable. Languages like C2, Darwin, and UnfmPlicity.
Con support such “semantically sound”
while ACME, SADL, and Wright do nct.

graphical notationSee hat the specified source modules will correctly implement the
desired behavior. Finally, even if the specified modules currently
implement the needed behavior correctly, this approach provides
4.3.2 Compositionality no means of ensuring that future changes to those modules are
traced back to the architecture and vice versa.
SADL and Rapide support refinement and traceability more
tensively. They provide maps for refining architectures across

Most ADLs provide explicit features to support hierarchical
composition of components, where the syntax for specifyin%X

compoatg compor_1ents typically resemble; that for specifyin ifferent levels of abstraction. SADL uses its maps (see Fig. 14)
configurations. Wright allows both composite components an . . .
Q prove the correctness of architectural refinements, while

connectors: the computation (glue) of a composite compone . . : X :)
. P (glue) . P _comp &amde generates comparative simulations of architectures at dif-
(connector) is represented by an architectural description, rathF

r . .
than in CSP. It is interesting to note that Darwin and UniCon d erent levels. Both languages thus provide the means for tracing

not have explicit constructs for modeling architectures. Instea§eggn decisions and changes from one level of architectural

. : ﬁgecification (or implementation) to another. They enforce differ-
they both model architectures as composite components. T) i ,)
ent refinement rules, however: SADL's stringent correctness-pre-

statement sequence shown in Fig. 12 occurs inside the specifica- . e . .
. . . .Serving criterion ensures that all decisions made at a given level
tion of a UniCon composite component. An example of a Darwin L . -
. L . . are maintained at all subsequent levels, but disallows new deci-
component illustrating its support for compositionality is shown . .) L -
- sions to be introduced; Rapide’s maps allow new decisions, but
in Fig. 13. L . -
may also eliminate high-level behaviors at the lower levels. Gar-
lan has recently argued for a marriage of the two approaches [13].

4.3.3 Refinement and Traceability

Architectural refinement and traceability of architectural deci- arch_map MAPPING FROM arch_L1 TO arch_L2
sions, properties, and relationships across refinements is still very comp --> (new_comp)
much an open research area. Support for them in existing ADLs gg'r‘t”__‘j(()”eW—Comp!S“bcomp)
is limited. Several ADLs enable system generation directly from ...
an architectural specification. These are typicallyitly@emen-
tation constraining language®ee Section 3), in which a source Fig. 14. A refinement mapping declared in SADL. Level 1
file corresponds to each architectural element. There are sevefgfhitecture’s component comp is mapped to Level 2

. . _ . . ___architecture’s new_compLevel 1 connector connis implemented
problems with this approach to refining an architecture. PrlmeBy new_comis subcomponent subcomp. Level 1 port has been

rily, there is an assumption that the relationship between elemendiminated from the Level 2 architecture; SADL ensures that the
of an architectural description and those of the resulting execufinctionality associated with the port is provided elsewhere in

able system will be 1-to-1. This may be unnecessary, and evéfeh_L2
unreasonable, as architectures describe systems at a higher level

of abstraction than source code modules. There is also no guaran- .
4.3.4 Heterogeneity

9. Note that a graphical specification of an architecture may not contain all the No ADL provides explicit support for multiple formal specifi-
information in its textual counterpart (e.g., formal component and connector speg.. ,: : :
ifications), and vice versa (e.g., graphical layout information). Additional suppor§atlon Ianguages. Of those ADLs that support |mplementat|on of

is needed to make the two truly interchangeable (see Section 4.4.2). architectures, several are also tightly tied to a particular program-

16 of 24

ming language. For example, Aesop and Darwin only suppoFfor example, ACME and Aesop could not handle the extension to
development with components implemented in C++, whilghe architecture shown in Fig. 15a without redefir@mmnnland
MetaH is restricted to Ada and UniCon to C. On the other han€Conn2 while C2 and UniCon can.

C2 currently supports development in C++, Ada, and Java, while To properly evaluate an ADL's support for scalability, these
Weaves supports interconnection of tool fragments implementétkuristics should be accompanied by other criteria. The ultimate

in C, C++, Objective C, and Fortran.

determinant of scalability support is the ability of developers to

Several ADLs place restrictions that limit the number andmplement and/or analyze large systems based on the architec-
kinds of components and connectors they can support. For exataral descriptions given in an ADL. For example, asiraline
ple, MetaH requires each component to include a loop with a calbnfiguration languageRapide has been highlighted as an ADL

to the predeclared procedui{ERNELAWAIT DISPATCHtO periodi-

whose features may hamper scalability, yet it has been used to

cally dispatch a process. Any existing components have to Isgecify architectures of several large, real world systems. Several
modified to include this construct before they can be used in@ther ADLs have been applied to large-scale examples:

MetaH architecture. Similarly, UniCon allows certain types of e
components and connectors (e.g., pipes, filters and sequential
files), but requires wrappers for others (e.g., spreadsheets, con-
straint solvers, or relational databases).

Finally, another aspect of heterogeneity is the granularity of e
components. Most surveyed ADLs support modeling of both fine
and coarse-grain components. At one extreme are components
that describe a single operation, sucle@sputationsn UniCon
or proceduresn MetaH, while the other extreme can be achieved «

Wright was used to model and analyze Runtime Infra-
structure (RTI) of the Department of Defenddigh-Level
Architecture for Simulationfs], whose original specification
was over 100 pages long.

SADL ensured the consistency between the reference archi-
tecture and the implementation of a power-control system
used by the Tokyo Electric Power Company, implemented in
200,000 Fortran 77 lines of code (LOC).

C2 has been used in the specification and implementation of

by hierarchical composition, discussed in Section 4.3.2. its supporting environment, consisting of a number of large

custom-built and OTS components [42], [52]. The custom-
built components comprise over 100,000 Java LOC; the OTS
components comprise several million LOC.

Weaves has been used in satellite telemetry processing appli-
cations, whose size has ranged between 100,000 and over
1,000,000 LOC.

A representative example of Rapide’s use is the X/Open Dis-
tributed Transaction Processing Industry Standard, whose
documentation is over 400 pages long. X/Open’s reference
architecture and subsequent extensions have been success-
fully specified and simulated in Rapide [31].

4.3.5 Scalability

We consider the impact of scaling an architecture along two «
general dimensions: adding elements to the architecture’s interior
(Fig. 15a) and adding them along the architecture’s boundaries
(Fig. 15b). To support the former, ADLs can, minimally, employ
compositionality features, discussed in Section 4.3.2: the original
architecture is treated as a single, composite component, which is
then attached to new components and connectors. Objectively
evaluating an ADLs ability to support the latter is more difficult,
but certain heuristics can be of help.

It is generally easier to expand architectures described i o
explicit configuration ADLsthan in-line configuration ADLs %.3.6 Evolvability
connectors in the latter are described solely in terms of the com-Evolvability of an architectural configuration can be viewed
ponents they connect and adding new components may requffém two different perspectives. One is its ability to accommo-
modifications to existing connector instances. Additionallydate addition of new components in the manner depicted in Fig.
ADLs that allow a variable number of components to be attacherb. The issues inherent in doing so were discussed in the preced-
to a single connector are better suited to scaling up than those tiraj subsection. Another view of evolvability is an ADL's toler-
specify the exact number of components a connector can serviggice and/or support for incomplete architectural descriptions.
Incomplete architectures are common during design, as some
decisions are deferred and others have not yet become relevant. It
would therefore be advantageous for an ADL to allow incomplete
descriptions. However, most existing ADLs and their supporting
toolsets have been built around the notion that precisely these
kinds of situations must be prevented. For example, Darwin,
MetaH, Rapide, and UniCon compilers, constraint checkers, and
runtime systems have been constructed to raise exceptions if such
situation arise. In this case, an ADL, such as Wright, which

' focuses its analyses on information local to a single connector is
e better suited to accommodate expansion of the architecture than,
e.g., SADL, which is very rigorous in its refinementettire
architectures.

Another aspect of evolution is support for families of applica-
tions. One way in which all ADLs support families is by separat-
ing component and connector types from instances. For example,

......

Fig. 15. An existing architecture is scaled up: (a) by adding new
components/connectors to its interior and (b) by expanding it
“outward”. C2’s graphical notation is used for illustration.

17 of 24

Weaves supports specification of architectfreaheworkswhich C2 and Weaves support dynamic manipulation without any
are populated with sockets, rather than actual tool fragments argkstrictions on the types of permitted changes. Instead, arbitrary
transport services. Each instantiation of an architecture can therdifications are allowed in principle; their consistency is
be considered a member of the same family. This is a limitegnsured at system runtime. C2's architecture modification
notion of family, as it does not allow the architecture itself to bésub)languageAML) specifies a set of operations for insertion,
modified. Furthermore, the family to which an applicationremoval, and rewiring of elements in an architecture at runtime:
belongs is implicit in its architecture. addCompo:wem;emoveCo_mpone,rk\]tveld, iﬁdunweké[%_], [5d2]_- o
; . .. For example, the extension to the architecture depicted in Fig.
ACME is the only surveyed language that specifies archltecgsgj1 is specified in C2's AML as shown in Fig. 18. Weaves pro-

tural families explicitly, as first-class language constructs, an T ; S
. . vides similar support by exporting an application programmable
supports their evolution. The component and connector types
. . : . interface (API) to a model of a weave.
declared in a family provide a design vocabulary for all systems

that are declared as members of that family. The example given in o Arch.add _

Fig. 16 shows the declaration of a simple ACME family and its SambicArch aeio(Com Coponr

evolution. Sample_Arch.weld(Comp5, Conn2);
Compb5.start();

Family fam ={ Fig. 18. Dynamic insertion of a component into a C2 architecture
Component Type compl={ Port p1;} Sample_ArchThe start command informs the C2 implementation
Component Type comp2={ Port p2} infrastructure (see Section 4.4.5) to start executing Comp5

Connector Type connl ={ Roles (r1,r2);}

Family sub_fam extends fam with { 4.3.8 Constraints
Component Type sub_compl extends compl with {

Port pl= P t ttach : int <<default = 1>>; o . .
ort p1={ roperty afiach - int s=defau ! Most ADLs enforce built-in constraints on what they consider

Component Type comp3={...} to be valid configurations. For example, UniCon always requires

} a connector role to be attached to a component player, while Dar-
Fig. 16. Declaration of a family of architectures, fam and its win only allows bindings between provided and required ser-
subfamily, sub_fam in ACME. fam is evolved into sub_famby vices. On the other hand, several ADLs provide facilities for
adding a new component and a property to one of famcomponent specifying arbitrary global constraints. For example, Rapide’s
ports. timed poset language [33] can be used to constrain configurations
in the same manner as components (see Fig. 5). Similarly, as with
individual components, MetaH explicitly constrains configura-
tions with non-functional attributes. Refinement maps in SADL
provide constraints on valid refinements of a configuration (see
r$&ction 4.3.3). Finally, Wright allows specification of structural
invariants corresponding to different architectural styles. An
xample Wright style constraint is given in Fig. 19.

4.3.7 Dynamism

The majority of existing ADLs view configurations statically.
The exceptions are C2, Darwin, Rapide, and Weaves. Darwin a
Rapide support onlgonstraineddynamic manipulation of archi-
tectures, where all runtime changes must be known a priori [516]\
[52]. Darwin allows runtime replication of components via
dynamic instantiation, as well as deletion and rebinding of com-
ponents by interpreting Darwin scripts. An example of dynamic Constraints .
instantiation in Darwin is given in Fig. 17: invoking the service [%g 88nmnpeocr§gl;15ts.p: Tﬁ%ﬁ)_?pem Portg c)
create_instwith a data parameter results in a new instance of Typg p) = Datalnput Typd p) = DataOutput
componentompto whichdatais passed.

Style Pipe-Filter

Fig. 19. The pipe-and-filter style declared in Wright. The

component composite { _ constraint on the style specifies that all connectors are pipes and
Eir,?(\fde create_inst< dyn data>; that all component ports are either data input or data output ports.
create_inst -- dyn comp;

4.3.9 Non-Functional Properties

Fig. 17. Dynamic component instantiation in Darwin. o .
All ADLs that support specification of non-functional proper-

Rapide supports conditional configuration: where clause ties of components and connectors also support hierarchical com-
enables architectural rewiring at runtime, using line and position. Hence, they can specify such properties on architectures
unlink operators. Recently, Wright has adopted a similapy treating them as composite components. MetaH and Rapide
approach to dynamic architecture changes: it distinguishefiso support direct modeling of non-functional properties of
between communication and control events, where the contrglchitectures: MetaH allows specification of properties such as
events are used to specify conditions under which dynamige processor on which the system will execute, while Rapide
changes are allowed [3]. The reconfiguration actions that are trigtows modeling of timing information in its constraint language.
gered in response to control events aewy del, attach and SADL has been used to model security in a software architecture
detach by adopting a different approach: instead of providing security

18 of 24

modeling features in SADL, the “original” architecture is modi-tion tool. The Assistant automatically adds services (i.e.,

fied by adding the necessary component and connector parantgerface points) of appropriate types to components that are
ters and architectural constraints [48]. It is unclear whether thisound together. It also maintains the consistency of data types of
approach is applicable to other non-functional properties or hoaonnected ports: changing one port’s type is automatically propa-

simple the needed modifications are in a general case. gated to all ports which are bound to it.
Reactive specification tools deteztisting errors. They may
4.3.10Summary of ADL Configurations either only inform the architect of the errorof-intrusive or

) i) . also force him to correct it before moving antiusive. In the

It is at the level of configurations that the fom’ of some ADLSormer case, once an inconsistency is detected, the tool informs
can be more easily noticed. For example, SADL's particular CORpe garchitect, but allows him to remedy the problem as he sees fit
tribution is in architectural refinement, while Darwin mostly o jgnore it altogether. C2BRADEL environment includes a type
focuses on system compositionality and dynamism. No singlgnecker that provides non-intrusive support: the architect can
ADL satisfies all of the classification criteria, alth(.)ug.h Rap'deproceed to the implementation generation phase even in the pres-
and Weaves come close. Coverage of several criteria is spaige of type mismatches. In the latter case, the architect is forced
across ADLs: reflnement and traceability, evolutlon', d)./namlsrq0 remedy the current problem before moving on. Certain fea-
and non-functional properties. These are good indicators @fires of MetaH's graphical editor can be characterized as intru-
where future research should be directed. On the other hangye: the MetaH editor gives the architect full freedom to
most ADLs allow or also provide explicit support for “”derStand‘manipulate the architecture until tRgply button is depressed,

ability, compositionality, and heterogeneity. A more completesiar which any errors must be rectified before the architect may
summary of this section is given in Table 4. continue with the design.

4.4 Tool Support for ADLs 4.4.2 Multiple Views

The need for tool support in architectures is well recognized. Most ADLs support at least two views of an architecture—tex-

However, there is a definite gap between what the research com- : .
o o X . tual and graphical—and provide automated support for alternat-
munity identifies as desirable and the state of the practice. While .
ing between them. Aesop, MetaH, UniCon, and Weaves also

every surveyed ADL provides some tool support, with the eXCeDd]istinguish different types of components and connectors iconi-

Flon of C2 and Rap|de,_ they tend.to focu; on a single area 0aIIy and allow both top-level and detailed views of composite
interest, such as analysis (e.g., Wright), refinement (e.qg., SADLiiements

or dynamism (e.g., Weaves). Furthermore, within these areas, i) , .)
ADLS tend to direct their attention to a particular technique (e.g., SUPPOrt for other views is sparse. CAigo design environ-

Wright's analysis for deadlocks), leaving other facets unexplored€nt provides a view of the architecture-centered development
This is the very reason ACME has been proposed as an archit@0cess [59]. Darwin'Software Architect's Assistaptovides a

ture interchange language: to enable interaction and cooperatiBigrarchical view of the architecture which shows all the compo-
among different ADLS’ toolsets and thus fill in these gaps. Thi§ent types and the “include” relationships among them in a tree

section surveys the tools provided by the different Ianguage§tm0ture- Rapide and C2 allow visualization of an architecture’s
attempting to highlight the biggest shortcomings. execution behavior by building an executable simulation of the

architecture and providing tools for viewing and filtering events
generated by the simulation. In particular, Rapide us&rtala-
tor tool to build the simulation and ifnimation Tooldo animate

Only a handful of existing ADLs provide tools that actively it execution. Rapide also providBsset Browsera tool that
support specification of architectures. In general, such tools c@ows viewing events generated by the simulation. Weaves
be proactive or reactive. Proactive specification tools act in a pr@dopts a similar approach: it allows insertion of low-overhead
scriptive manner, similar to syntax-directed editors for programobservers into a weave to support real-time execution animation.
ming languages: they limit the available design decisions based
on the current state of architectural design. For example, sueh4.3 Analysis
tools may prevent selection of components whose interfaces do
not match those currently in the architecture or disallow invoca- The types of analyses for which an ADL is well suited depend
tion of analysis tools on incomplete architectures. on its underlying semantic model and, to a lesser extent, its spec-

UniCon’s graphical editor operates in this manner. It invoked#fication features. For example, Wright uses CSP to analyze indi-
UniCon’s language processing facilitiespeventerrors during Vidual connectors and components attached to them for
design, rather than correct them after the fact. Furthermore, tf@adlocks; Aesop and C2 ensure style-specific topological con-
editor limits the kinds of players and roles that can be assigned$§aints and type conformance among architectural elements;
different types of components and connectors, respectively. SinfiletaH and UniCon support schedulability analysis by specifying
larly, C2’s DRADEL development environment proactively guidesnon-functional properties, such as criticality and priority; finally,
the “architecting” process by disa”owing certain operations (egS’ADL can establish relative correctness of two architectures with
architectural type checking) before others are completed (e.gespect to a refinement map.
topological constraint checking) [42]. DarwirBoftware Archi- Another set of analysis techniques involves simulation of the
tect’s Assistanf50] is another example of a proactive specifica-behavior described in an architecture. Examples are Rapide’s,

4.4.1 Active Specification

19 of 24

TABLE 4
ADL SuPPORT FORMODELING ARCHITECTURAL CONFIGURATIONS
eature: :
Charact. | Understand. | Compos. REII Heterogen. Scalability Evolution Dynamism | Constraints ALl Fu_n e
ADL Trace. Properties
Attach- [explicit, con- [provided |rep-maps open property |aided by explicit aided by explicit [none ports may only [allows any
ments cise textual via tem- lists; required | configurations; |configurations; be attached to |attribute in
explicit |specification |plates, rep- explicit map- hampered by [first-class families roles and vice |property
ACME resentation pings across |fixed number of versa lists, but
s, and rep- ADLs roles does not
maps operate on
them
Configu- |explicit, con- |provided [none allows multiple |aided by explicit no support for par-{none ports may only | none
ration; cise graphical |via repre- languages for | configurations; |tial architectures; be attached to
Aeso explicit |specification; |sentations modeling semar-hampered by | aided by explicit roles and vice
P parallel type tics; supports | fixed number of | configurations versa; program-
hierarchy for development in [roles mable stylistic
visualization C invariants
Architec- |explicit, con- |allowed; [none enabled by interaided by explicit| allows partial architunanticipated |fixed stylistic [none
tural cise textual supported nal component |configurations |tectures; aided by |dynamism: |invariants
Topology |and graphical |via inter- architecture; sup-and variable explicit configura- |element inser:
c2 explicit |specification |nal compo- ports develop- |number of con- |tions; minimal tion, removal,
nent ment in C++, nector ports; component inter- |and rewiring
architec- Java, and Ada |used in the con- dependencies; hett
ture struction of its | erogeneous connec-
own tool suite |tors
Binding; |[in-line textual |[supported |supports sys-allows multiple [hampered by in{no support for par-{constrained |provided ser- [none
in-line specification |by lan- tem genera-|languages for |line configura- |tial architectures; |dynamism: |vices may only
. with many coniguage’s |tion when |modeling semar|tions hampered by in-lineruntime repli- | be bound to
Darwin nector details; | composite |implementa-|tics of primitive configurations cation of com{ required ser-
provides graph-componentj tion con- components; ponents and |vices and vice
ical notation |feature straining supports devel- conditional |versa
opment in C++ configuration
Connec- |in-line textual |supported |supports sys-supports devel- |hampered by in{no support for par- none applicationsare | supports
tions in- |specification |via macros|tem genera-|opment in Ada; |line configura- |tial architectures; constrained with attributes
MetaH line with many con tion; requires all comitions hampered by in-ling¢ non-functional |such as exe-
nector details; implementa-| ponents to con- configurations attributes cution pro-
provides graph- tion con- tain a process cessor and
ical notation straining dispatch loop clock period
Connect |in-line textual [mappings |refinement |supports devel- |hampered by in{no support for par- constrained |refinement mapstimed poset
in-line specification |relate an |maps enablgopment of exe- |line configura- |tial architectures; |dynamism: |constrain valid |modelallows
_ with many coniarchitec- |comparative |cutable tions; used in | hampered by in-lingconditional | refinements; modeling of
Rapide nector details; |ture to an |simulations |simulations in |large-scale configurations; configuration |timed poset conttiming in the
provides graph-nterface |of architec- |Rapide’s execut:projects and dynamic |straint language| constraint
ical notation tures at dif- |able sublanguage event genera- language
ferent levels tion
Configu- |explicit, con- |[mappings |refinement |supports both |aided by explicit no support for par- none programmable |architecture
ration; cise textual relate an |maps enablgfine- and coarsetconfigurations; |tial architectures; stylistic invari- | modified by
SADL Jexplicit |specification |architec- |correct grain elements |used in large- |aided by explicit ants; refinement adding con-
turetoa [refinements scale project | configurations; maps constrain | straints
component across styles valid refinements
Connect |explicit textual |supported |supports sys-supports only |aided by explicitf some support for [none players may onlynone
explicit |and graphical |through tem genera-|predefined com- configurations |partial architec- be attached to
. specification; |composite |[tion; ponent and con- and variable tures; aided by roles and vice
UniCon configuration |compo- implementa-| nector types; number of con- |explicit configura- versa
description nents and |tion con- supports compotnector roles tions;
may be distrib-| connectors| straining nent wrappers
uted
Weave |explicit, con- |supported |supports sysrdevelopment in |aided by explicit| allows partial architunanticipated | precludes direct| allows asso-
explicit |cise graphical |through tem genera-|C, C++, Objec- |configurations, |tectures; aided by |dynamism: |component-to- |ciation of
specification |composite |tion; tive C, and For- |sockets, and | explicit configura- |element inser;component links arbitrary,
Weave! sockets implementa-|tran; requires all{ variable number tions; support for |tion, removal, uninter-
tion con- tool fragments | of socket pads; |families via socket;and rewiring preted anno-
straining to provide a set |used in large- | populatedrame- tations with
of methods scale project |works weaves
Attach- [explicit, con- |computa- |none supports both |aided by explicit/ suited for partial |constrained |ports can only bénone
ments cise textual tion and fine- and coarsetrconfigurations |specification; aideddynamism: | attached to roles
explicit |specification |glue are grain elements |and variable by explicit configu-| element inser;and vice versa;
Wright express- number of roles]rations tion, removal, | programmable
ible as used in large- and rewiring | stylistic invari-
architec- scale project ants
tures

C2's, and Weaves’ event monitoring and filtering tools. Similarly, Language parsers and compilers are another kind of analysis
Darwin allows instantiation of parameters and dynamic compadools. Parsers analyze architectures for syntactic correctness,
nents to enact “what if’ scenarios. A related technique, comwhile compilers establish semantic correctness. All of the sur-
monly employed in Weaves, is to insert into the architecture geyed languages have parsers. Several (Darwin, MetaH, and Uni-
“listener” component whose only task is to analyze the data €on) also have “compilers,” enabling them to generate
receives from adjacent components. executable systems from architectural descriptions, provided that

20 of 24

component implementations already exist. Rapide’s compileated during simulation of the concrete architecture satisfy the
generates executable simulations of Rapide architectures. C2snstraints in the abstract architecture.

DRADEL environment, on the other hand, provides a tool that gen-

erates executable implementation skeletons from an architectusl4,5 Implementation Generation

model; the skeletons are completed either by developing new or _
reusing OTS functionality. A large number of ADLs, but not all, support generation of a

L . system from its architecture. Exceptions are SADL, ACME, and
Another aspect of analysis is enforcement of constraints. Parg; . . . ! .
:) L . right, which are currently used strictly as modeling notations
ers and compilers enforce constraints implicit in type informa-

i functional attribut ; q ¢ and provide no implementation generation support. It is interest-
lon, non-iunctional attributes, -component -and connec Ofngq to note that, while SADL focuses on refining architectures, it

|nterche§, and semantic models. R§p|de also su_pports expl|8| es not take the final refinement step from architectural descrip-
specification of other types of constraints, and provides means ff?[)ns to source code

their checking and enforcement. @snstraint Checkeanalyzes Several ADLs employ architectural “compilers.” as already

the.confc.)rmance of a Rapide simulation to .the formal ConStrainEﬁscussed above. Aesop adopts a different approach: it provides a
defined in the architecture. C2's constraint checker currenth¢, . qass hierarchy for its concepts and operations, such as com-
focuses only on the topological rules of the style; an initial intepqnants connectors, ports, roles, and attachments. This hierarchy
gration with the architecture constraint checking tool, Armang, g 4 basis from which an implementation of an architecture

[45], allows specification and enforcement of arbitrary CONiay he produced; the hierarchy is in essence a domain-specific

straints. language for implementing Aesop architectures.
A similar approach is used in C2, which provides a framework
4.4.4 Refinement of abstract classes for C2 concepts [42]. Components and con-

nectors used in C2 applications are subclassed from the appropri-

Several ADLs support direct refinement of architectural modate framework classes. The framework has been implemented in
els to executable code via “compilation.” Darwin, MetaH, andC++, Java, and Ada; several OTS middleware technologies have
UniCon achieve this in a manner similar to MILs: architecturabeen integrated with the framework to enable interactions
components are implemented in a programming language and thetween C2 components implemented in different languages
architectural description serves only to ensure proper intercofitO]. Application skeletons produced by C2's code generation
nection and communication among them. The drawbacks of thiacilities discussed in above result in instantiated, but partially
approach were discussed in Section 4.3.3. Rapide, on the ottiplemented framework classes.
hand, provides an executable sublanguage that contains many
common programming language control structures. C2 goe$4.6 Dynamism
beyond linking existing modules, but not as far as to provide exe- o) o o
cutable language constructs: an architecture is refined into a par-1 "€ limited support for modeling dynamism in existing ADLs,
tial implementation, which contains completion guidelines fodiscussed in Section 4.3.7, is reflected in the limited tool support

developers derived from the architectural description. For exanfor dynamism. Darwin and Rapide can model only planned mod-

ple, each method is accompanied by specifications of its precoiﬁgations at runtime: both support conditional configuration; Dar-

dition and postcondition, as shown in Fig. 20; the developer muin also allows component replication. Their compilation tools

only ensure their satisfaction when implementing the method arpsure that all possible configuration alternatives are enabled.
need not worry about the rest of the system C2 and Weaves toolsets support dynamism more extensively.

Weaves provides a visual editdgcquard which uses the pro-
/I PRE: pos \greater 0.0 \and pos \egless num vided API to the architectural model to dynamically manipulate a
public Color GetTile(Integer pos) { weave in an arbitrary fashion. C2gchStudiotool [52] enables
/r;t,mlz\,mo; %E,’SE’Y i arbitrary interactive construction, execution, and runtime-modifi-
- cation of C2-style architectures implemented in JAvehStudio
supports modification of an architecture at runtime by dynami-
Fig. 20. Each method generated by C2 is preceded by its cally loading and linking new components or connectors into the
precondition and followed by its postcondition. architecture. Both C2 and Weaves exploit their flexible connec-
tors (see Section 4.2) to support dynamism.

}
/I POST: \result = well_at_pos \and ~num = num - 1.0

Only SADL and Rapide provide tool support for refining
architectures acrosaultiple levels of abstraction and specificity.
SADL's support is partial. It requires manual proofs of mappings Existing ADLs span a broad spectrum in terms of the design
of constructs between an abstract and a more coramgtitec- and development tools they provide. On the one hand, ACME
tural style Such a proof is performed only once; thereaftercurrently only facilitates visualization of its architectures,
SADL provides a tool that automatically checks whether any tWgADL's toolset consists primarily of a refinement consistency
architectures described in the two styles adhere to the mappinghecker, and Weaves has focused on interactive specification and
Rapide, on the other hand, supports event maps between individanipulation of architectures. On the other hand, Darwin,
ual architectures The maps are compiled by RapidBisnulator ~ Rapide, and UniCon provide powerful architecture modeling
so that theConstraint Checkecan verify that the events gener- environments; C2 and Darwin are the only ADLs that provide

4.4.7 Summary of ADL Tool Support

21 of 24

Feature i i
Agt!ve : Multiple Views Analysis Refinement Implementg tion Dynamism
ADL Specification Generation
none textual; “weblets” in | parser none none none
ACME-Web; architec-
ACME ture views in terms of
high-level (template), as
well as basic constructs
syntax-directed editor for |textual and graphical; | parser; style-specific [none build tool constructs|none
components; visualization |style-specific visualizatcompiler; type checker; system glue code in
Aeso classes invoke specialized |tions; component and | cycle checker; checke C for pipe-and-filter
P Nexternal editors connector types distin- for resource conflicts style
guished iconically and scheduling feasibil-
ity
proactive “architecting” pro-|textual and graphical; | parser; style rule generates application |class framework ArchStudioallows unan-
cess iIDRADEL; reactive, view of development |checker; type checker|skeletons which can be|enables generation oficipated dynamic
c2 non-intrusive type checker; | process completed by reusing |C/C++, Ada, and |manipulation of architeg-
design critics and to-do lists OTS components Java codepRADEL |tures
in Argo generates applica-
tion skeletons
automated addition of ports ttextual, graphical, and | parser; compiler; “whatcompiler; primitive com;compiler generates | compilation and runtimg
communicating componentshierarchical system |if” scenarios by instan{ponents are implemente@++ code support forconstrained
Darwin propagation of changes acrosgew tiating parameters and in a traditional program dynamic change of arch}i-
bound ports; dialogs to spec- dynamic components | ming language tectures (replication an
ify component properties; conditional configura-
tion)
graphical editor requires errptextual and graphical; |parser; compiler; schegcompiler; primitive com{DSSA approach; |none
correction once architecturg component types distinulability, reliability, ponents are implementedompiler generates
MetaH changes arapplied con- guished iconically and security analysis |in a traditional programtAda code
strains the choice of compot ming language
nent properties via menus
none textual and graphical; | parser; compiler; analyeompiler for executable| executable simula- |compilation and runtime
visualization of execu-|sis via event filtering |sublanguage; tools to |tion construction in |support forconstrained
Rapide tion behavior by ani- |and animation; con- |compile and verify eventRapide’s executable dynamic change of archji-
mating simulations straint checker to ensufpattern maps during simsublanguage tectures (conditional
valid mappings ulation configuration)
none textual only parser; analysis of relahecker for adherence ofione none
tive correctness of architectures to a manu-
SADL architectures with ally-proved mapping
respect to a refinement
map
graphical editor prevents |textual and graphical; |parser; compiler; schegcompiler; primitive com;compiler generates Ghone
UniCon ferrors during design by component and connepdlability analysis ponents are implementedode
invoking language checker |tor types distinguished In a traditional program
iconically ming language
none graphical only; compo-parser; real-time execiyinone dynamic linking of |Jacquardallows unantic
nent and connector |tion animation; low components in C, |ipated dynamic manipu
Weaves types (sockets) distin- | overhead observers; C++, Objective C, |lation of weaves
guished iconically analysis/debugging and Fortran; no codg
components in a weave generation
none textual only; model parser; model checker|none none none
_ checker provides a tex-for type conformance gf
Wright tual equivalent of CSP|ports to roles; analysis
symbols of individual connectors
for deadlock

tool support in all classification categories. Overall, existing The main contribution of this paper is just such a definition and
ADLs have put the greatest emphasis on visualization and-analgiassification framework. The definition provides a simple litmus
sis of architectures and the least on refinement and dynamismést for ADLs that largely reflects community consensus on what

more complete summary of this section is given in Table 5.

5 CONCLUSIONS

is essential in modeling an architecture: an architectural descrip-
tion differs from other notations by iexplicit focus on connec-

tors and architectural configurations. We have demonstrated how
the definition and the accompanying framework can be used to

Classifying and comparing any two languages objectively iS gotermine whether a given notation is an ADL and, in the pro-

difficult task. For example, a programming language, such A%ss, discarded several
Ada, contains MIL-like features and debates rage over whether
Java is “better” than C++ and why. On the other hand, there exi
both an exact litmus test (Turing completeness) and ways to diS;

notations as potential ADLs. Some
(LILEANNA and ArTek) may be more surprising than others
HAM and Statecharts), but the same criteria were applied to

tinguish different kinds of programming languages (imperative _

vs. declarative vs. functional, procedural vs. OO). Similarly, for- Of those languages that passed the litmus test, several strad-
mal specification languages have been grouped into model-bas@fd the boundary by either modeling their connectors in-ie (
state-based, algebraic, axiomatic, and so forth. Until now, howine configuration ADL} or assuming a bijective relationship

ever, no such definition or classification existed for ADLSs.

between architecture and implementationplementation con-
straining ADL3. We have discussed the drawbacks of both cate-
gories. Nevertheless, it should be noted that, by simplifying the

relationship between architecture and implementaitioplemen-

22 of 24

M. Shaw, S. Vestal, J. Whitehead, and A. Wolf. We also thank the

tation constraining ADL$iave been more successful in generatreferees of TSE for their helpful reviews.

implementations than “mainstream”implementation

ing

Effort sponsored by the Defense Advanced Research Projects

independent ADLs. Thus, for example, although C2 is imple- Agency, and Rome Laboratory, Air Force Materiel Command,
mentation independent, we assumed this 1-to-1 relationship WSAF, under agreement number F30602-97-2-0021. The U.S.
building the initial prototype of our implementation generationGovernment is authorized to reproduce and distribute reprints for

tools [42].

Governmental purposes notwithstanding any copyright annota-

The comparison of existing ADLs highlighted several areaQO” thereon. The views and conclusio_ns contained herein ar_e
where they provide extensive support, both in terms of architednose of the authors and should not be interpreted as necessarily

ture modeling capabilities and tool support. For example, a nu
ber of languages use powerful formal notations for modelin%X
component and connector semantics. They also provide a ple
ora of architecture visualization and analysis tools. On the other

nhepresenting the official policies or endorsements, either
pressed or implied, of the Defense Advanced Research
rojects Agency, Rome Laboratory or the U.S. Government.

hand, the survey also pointed out areas in which existing ADLREFERENCES

are severely lacking. Only a handful support the specification EI
non-functional properties, even though such properties may e]
essential for system implementation and management of the cor-
responding development process. Architectural refinement and
constraint specification have also remained largely unexploreE?.]
Finally, both tools and notations for supporting architectural
dynamism are still in their infancy. Only two ADLs have eveng
attempted to achieve unanticipated dynamism thus far.

Perhaps most surprising is the inconsistency with which ADLs
support connectors, especially given their argued primary role P]
architectural descriptions. Several ADLs provide only minima
connector modeling capabilities. Others either only atiovdel-
ing of complex connectors (e.g., Wright) or implementation of5]
simpleones (e.g., UniCon). C2 has provided the initial demon-
stration of the feasibility of implementing complex connectors by
employing existing research and commercial connector technolgs)
gies, such as Polylith [56] and CORBA [53]. However, this

remains a wide open research issue.

Finally, neither the definition nor the accompanying framem
work have been proposed as immutable laws on ADLs. Quite the
contrary, we expect both to be modified and extended in the
future. We are currently considering several issues: providing E]
clearer distinction between descriptive languages (e.g., ACME)
and those that primarily enable semantic modeling (e.g., Wrightjy
comparing software ADLs to hardware ADLs; and expanding the
framework to include other criteria (e.g., support for extensibil-
ity). We have had to resort to heuristics and subjective criteria i
comparing ADLs at times, indicating areas where future wor
should be concentrated. But what this taxonomy provides is an
important advance towards answering the question of what an

G. Abowd, R. Allen, and D. Garlan. “Using Style to Understand
Descriptions of Software Architecture.” Rroceedings of the First
ACM SIGSOFT Symposium on the Foundations of Software
Engineering pages 9-20, Los Angeles, CA, December 1993.

R. Allen. “A Formal Approach to Software Architecture.” Ph.D.
Thesis, Carnegie Mellon University, CMU Technical Report CMU-
CS-97-144, May 1997.

R. Allen, R. Douence, and D. Garlan. “Specifying Dynamism in
Software Architectures.” InProceedings of the Workshop on
Foundations of Component-Based Systepages 11-22, Zurich,
Switzerland, September 1997.

R. Allen and D. Garlan. “A Formal Basis for Architectural
Connection.” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 3, pp. 213-249, July 1997.

R. Allen, D. Garlan, and J. Ivers. “Formal Modeling and Analysis of
the HLA Component Integration Standard.”Rnoceedings of the
Sixth ACM SIGSOFT Symposium on the Foundations of Software
Engineering pages 70-79, Lake Buena Vista, FL, November 1998.
P. Binns, M. Engelhart, M. Jackson, and S. Vestal. “Domain-
Specific Software Architectures for Guidance, Navigation, and
Control.” International Journal of Software Engineering and
Knowledge Engineeringol. 6, no. 2, 1996.

P. C. Clements. “Formal Methods in Describing Architectures.” In
Proceedings of the Workshop on Formal Methods and Architecture
Monterey, CA, 1995.

P. C. Clements. “A Survey of Architecture Description Languages.”
In Proceedings of the Eighth International Workshop on Software
Specification and Desigfaderborn, Germany, March 1996.

P. C. Clements. “Working Paper for the Constraints Sub-Group.”
EDCS Architecture and Generation Cluster (http://
www.sei.cmu.edu/~edcs/CLUSTERS/ARCH/index.html), April
1997.

10] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. “Using Off-the-

Shelf Middleware to Implement Connectors in Distributed Software
Architectures.” InProceedings of the 21st International Conference
on Software Engineering (ICSE'99)os Angeles, CA, May 1999.

ADL is and why, and how it compares to other ADLs. SucH11] D. Garlan, editorProceedings of the First International Workshop

information is needed both for evaluating new and improvin
existing ADLs, and for targeting future research and architectu
interchange efforts more precisely.

on Architectures for Software Syster8sattle, WA, April 1995.

12] D. Garlan. “An Introduction to the Aesop System.” July 1995.

http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop-
overview.ps

[13] D. Garlan. “Style-Based Refinement for Software Architecture.” In

ACKNOWLEDGMENTS

A. L. Wolf, ed.,Proceedings of the Second International Software
Architecture Workshop (ISAW;3)ages 72-75, San Francisco, CA,
October 1996.

We wish to thank the following people for their insightful com-[14] D. Garlan, R. Allen, and J. Ockerbloom. “Exploiting Style in

ments on earlier drafts of this paper: R. Allen, K. Anderson, P.
Clements, R. Fielding, D. Garlan, M. Gorlick, W. Griswold, D.

Hilbert, A. van der Hoek, P. Kammer, J. Kramer, D. Luckham, J[15]

Magee, R. Monroe, M. Moriconi, K. Nies, P. Oreizy, D. Red-
miles, R. Riemenschneider, J. Robbins, D. Rosenblum, R. Selby,

Architectural Design Environments.” InProceedings of
SIGSOFT'94: Foundations of Software Engineeripgges 175-
188, New Orleans, Louisiana, USA, December 1994.

D. Garlan, R. Monroe, and D. Wile. “ACME: An Architecture
Description Interchange Language.” InProceedings of
CASCON’97 November 1997.

23 of 24

[16] D. Garlan, F. N. Paulisch, and W. F. Tichy, edit&smmary of the L. Wolf, ed., Proceedings of the Second International Software
Dagstuhl Workshop on Software Architectuféebruary 1995. Architecture Workshop (ISAW;3)ages 24-27, San Francisco, CA,
Reprinted inACM Software Engineering Notgsages 63-83, July October 1996.

1995. [39] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. “Using

[17] D. Garlan, J. Ockerbloom, D. Wile. “Towards an ADL Toolkit.” Object-Oriented Typing to Support Architectural Design in the C2
EDCS Architecture and Generation Cluster (http:// Style.” InProceedings of ACM SIGSOFT’96: Fourth Symposium on
www.cs.cmu.edu/~spok/adl/index.html), December 1998. the Foundations of Software Engineering (FSpéges 24-32, San

[18] C. Ghezzi, M. Jazayeri, D. Mandriolkkundamentals of Software Francisco, CA, October 1996.

Engineering Prentice Hall, 1991. [40] N. Medvidovic and D. S. Rosenblum. “Domains of Concern in

[19] J. A. Goguen and T. Winkler. “Introducing OBJ3.” Technical Software Architectures and Architecture Description Languages.”
Report SRI-CSL-88-99, SRI International, 1988 In Proceedings of the USENIX Conference on Domain-Specific

[20] M. Gorlick and A. Quilici. “Visual Programming in the Large versus Languagespages 199-212, Santa Barbara, CA, October 1997.
Visual Programming in the Small.” Proceedings of the 1994 IEEE [41] N. Medvidovic and D. S. Rosenblum. “Assessing the Suitability of

Symposium on Visual Language@sges 137-144, St. Louis, MO, a Standard Design Method for Modeling Software Architectures.”

October 1994. In Proceedings of the First Working IFIP Conference on Software
[21] M. M. Gorlick and R. R. Razouk. “Using Weaves for Software Architecture (WICSAlpages 161-182, San Antonio, TX, February

Construction and Analysis.” InProceedings of the 13th 1999.

International Conference on Software Engineering (ICSHi&Jes [42] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. “A Language

23-34, Austin, TX, May 1991. and Environment for Architecture-Based Software Development

[22] P. Hagger. “QAD, a Modular Interconnection Language for Domain and Evolution.” InProceedings of the 21st International Conference
Specific Software Architectures.” Technical Report, University of on Software Engineering (ICSE'99)os Angeles, CA, May 1999.

Maryland, June 1993. [43] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. “Formal
[23] D. Harel. “Statecharts: A Visual Formalism for Complex Systems.” Modeling of Software Architectures at Multiple Levels of

Science of Computer Programmjri87. Abstraction.” InProceedings of the California Software Symposium
[24] C. A. R. Hoare.Communicating Sequential Process@sentice 1996 pages 28-40, Los Angeles, CA, April 1996.

Hall, 1985. [44] R. Milner, J. Parrow, and D. WalkeA Calculus of Mobile

[25] P. Inverardi and A. L. Wolf. “Formal Specification and Analysis of Processes, Parts | and Nolume 100 oflournal of Information and
Software Architectures Using the Chemical Abstract Machine Computationpages 1-40 and 41-77, 1992.
Model.” IEEE Transactions on Software Engineeriagl. 21, no. 4, [45] R. Monroe. Capturing Software Architecture Design Expertise With
pages 373-386, April 1995. Armani. Technical Report CMU-CS-98-163, Carnegie Mellon
[26] F. Jahanian and A. K. Mok. “Modechart: A Specification Language University, October 1998.
for Real-Time Systems.”IEEE Transactions on Software [46] M. Moriconi and R. A. Riemenschneider. “Introduction to SADL
Engineering vol. 20, no. 12, pages 933-947, December 1994. 1.0: A Language for Specifying Software Architecture Hierarchies.”
[27] P. Kogut and P. C. Clements. “Features of Architecture Description Technical Report SRI-CSL-97-01, SRI International, March 1997.
Languages.” Draft of a CMU/SEI Technical Report, Decembeif47] M. Moriconi, X. Qian, and R. A. Riemenschneider. “Correct
1994. Architecture Refinement.” IEEE Transactions on Software
[28] P. Kogut and P. C. Clements. “Feature Analysis of Architecture Engineeringvol. 21, no. 4,, pages 356-372, April 1995.
Description Languages.” Froceedings of the Software Technology [48] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong.

Conference (STC'95%alt Lake City, April 1995. “Secure Software Architectures.” Rroceedings of the 1997 IEEE
[29] C. W. Krueger. “Software ReuseComputing Surveysol. 24, no. Symposium on Security and Priva©akland, CA, May 1997.

2, pages 131-184, June 1992. [49] P. Newton and J. C. Browne. “The CODE 2.0 Graphical Parallel
[30] D. Luckham.ANNA, a Language for Annotating Ada Programs: Programming Language.” Proceedings of the ACM International

Reference Manualvolume 260 ofLecture Notes in Computer Conference on Supercomputjrdgily 1992.

Science Springer-Verlag, Berlin, 1987. [50] K. Ng, J. Kramer, and J. Magee. “A CASE Tool for Software

[31] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and Architecture Design.” Journal of Automated Software Engineering
W. Mann. “Specification and Analysis of System Architecture (JASE), Special Issue on CASE-95, vol. 3, no. 3-4, pp. 261-284,
Using Rapide."IEEE Transactions on Software Engineeringl. 1996.

21, no. 4, pages 336-355, April 1995. [51] P. Oreizy. “Issues in the Runtime Modification of Software

[32] D. C. Luckham and J. Vera. “An Event-Based Architecture Architectures.” Technical Report, UCI-ICS-96-35, University of
Definition Language.TEEE Transactions on Software Engineering California, Irvine, August 1996.
vol. 21, no. 9, pages 717-734, September 1995. [52] P. Oreizy, N. Medvidovic, and R. N. Taylor. “Architecture-Based

[33] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz. “Partial Runtime Software Evolution.” InProceedings of the 20th
Orderings of Event Sets and Their Application to Prototyping International Conference on Software Engineering (ICSE’'98
Concurrent, Timed Systemsldurnal of Systems and Softwavel. pages 177-186, Kyoto, Japan, April 1998.

21, no. 3, pages 253-265, June 1993. [53] R. Orfali, D. Harkey, and J. Edwardghe Essential Distributed

[34] D. C. Luckham, J. Vera, and S. Meldal. “Three Concepts of System Objects Survival GuideJlohn Wiley & Sons, Inc., 1996.
Architecture.” Technical Report, CSL-TR-95-674, Stanford[54] D. E. Perry and A. L. Wolf. “Foundations for the Study of Software
University, Palo Alto, July 1995. Architectures.”ACM SIGSOFT Software Engineering Notesl.

[35] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. “Specifying 17, no. 4, pages 40-52, October 1992.

Distributed Software Architectures.” IRroceedings of the Fifth [55] R. Prieto-Diaz and J. M. Neighbors. “Module Interconnection

European Software Engineering Conference (ESECB&)celona, Languages.Journal of Systems and Softwavel. 6, no. 4, pages
September 1995. 307-334, October 1989.

[36] J. Magee and J. Kramer. “Dynamic Structure in Softwarg56] J. Purtilo. “The Polylith Software Bus.ACM Transactions on
Architectures.” In Proceedings of ACM SIGSOFT'96: Fourth Programming Languages and Systemd. 16, no. 1, pages 151-
Symposium on the Foundations of Software Engineering (FSE4) 174, January 1994,
pages 3-14, San Francisco, CA, October 1996. [57] Rational Partners. “UML Semantics.” Object Management Group

[37] . Magee and D. E. Perry, editoBroceedings of the Third document ad/97-08-04. September 1997. Available from http://
International Software Architecture Worksho®rlando, FL, www.omg.org/docs/ad/97-08-04.pdf.

November 1998. [58] Rational Partners. “UML Notation Guide.” Object Management

[38] N. Medvidovic. “ADLs and Dynamic Architecture Changes.” In A. Group document ad/97-08-05. September 1997. Available from

http://www.omg.org/docs/ad/97-08-05.pdf.

[59] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. “Extending Design
Environments to Software Architecture Design.’Aroceedings of
the 1996 Knowledge-Based Software Engineering Conference
(KBSE) pages 63-72, Syracuse, NY, September 1996.

[60] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum. “Integrating Architecture Description Languages with a
Standard Design Method.” Proceedings of the 20th International
Conference on Software Engineering (ICSE/98ges 209-218,
Kyoto, Japan, April 1998.

[61] M. Shaw. “Procedure Calls are the Assembly Language of System
Interconnection: Connectors Deserve First Class Status.” In
Proceedings of the Workshop on Studies of Software Dddin
1993.

[62] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G.
Zelesnik. “Abstractions for Software Architecture and Tools to
Support Them.IEEE Transactions on Software Engineeringl.

21, no. 4, pages 314-335, April 1995.

[63] M. Shaw, R. DeLine, and G. Zelesnik. “Abstractions and
Implementations for Architectural Connections."Rroceedings of
the Third International Conference on Configurable Distributed
SystemsMay 1996.

[64] M. Shaw and D. Garlan. “Characteristics of Higher-Level
Languages for Software Architecture.” Technical Report, CMU-
CS-94-210, Carnegie Mellon University, December 1994.

[65] M. Shaw and D. Garlan. “Formulations and Formalisms in Software
Architecture.” Jan van Leeuwen, edit@omputer Science Today:
Recent Trends and DevelopmeSgringer-Verlag Lecture Notes in
Computer Science, Volume 1000, 1995.

[66] M. Shaw and D. Garlarsoftware Architecture: Perspectives on an
Emerging DisciplinePrentice Hall, April 1996.

[67] J. M. Spivey.The Z notation: a reference manu#rentice Hall,
New York, 1989.

[68] M. Shaw, D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C. Scott, M.
Schumacher. “Candidate Model Problems in Software
Architecture.” Unpublished manuscript, November 1995. Available
from http://www.cs.cmu.edu/afs/cs/project/compose/www/html/
ModProb/.

[69] A. Terry, R. London, G. Papanagopoulos, and M. Devito. “The
ARDEC/Teknowledge Architecture Description Language (ArTek),
Version 4.0.” Technical Report, Teknowledge Federal Systems, Inc.
and U.S. Army Armament Research, Development, and
Engineering Center, July 1995.

[7O] W. Tracz. “LILEANNA: A Parameterized Programming
Language.” InProceedings of the Second International Workshop
on Software Reuspages 66-78, Lucca, Italy, March 1993.

[71] S. Vestal. “A Cursory Overview and Comparison of Four
Architecture Description Languages.” Technical Report, Honeywell
Technology Center, February 1993.

[72] S. Vestal. “MetaH Programmer’s Manual, Version 1.09.” Technical
Report, Honeywell Technology Center, April 1996.

[73] A. L. Wolf, editor. Proceedings of the Second International
Software Architecture Workshop (ISAW-&an Francisco, CA,
October 1996.

[74] A. L. Wolf. “Succeedings of the Second International Software
Architecture Workshop (ISAW-2)."ACM SIGSOFT Software
Engineering Notgsvol. 22, no. 1, pages 42-56, January 1997.

24 of 24

