
Guidelines for the

Life Cycle Objectives (LCO)

and the

Life Cycle Architecture (LCA)

deliverables for

Model-Based Architecting and Software
Engineering (MBASE)

Inception and Elaboration
q Operational Concept Description (OCD)
q System and Software Requirements Definition (SSRD)
q System and Software Architecture Description (SSAD)
q Life Cycle Plan (LCP)
q Feasibility Rationale Description (FRD)

General permission to make fair use in teaching or research of all or part of these guidelines is granted to
individual readers, provided that the copyright notice of the Center for Software Engineering at the University
of Southern California is given, and that reference is made to this publication. To otherwise use substantial
excerpts or the entire work requires specific permission, as does reprint or republication of this material.

© Center for Software Engineering, University of Southern California. All Rights Reserved.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 2/94

General Guidelines
Please read the following general guidelines carefully, before proceeding to the guidelines for the individual
deliverables.

MBASE
The approach is to develop the following six system definition elements concurrently and iteratively (by refinement)
using the WinWin Spiral approach defined in [Boehm, 1996].

• Operational Concept Description (OCD)
• System and Software Requirements Definition (SSRD)
• System and Software Architecture Description (SSAD)
• Life Cycle Plan (LCP)
• Feasibility Rationale Description (FRD)
• Risk-driven prototypes

The first two critical project milestones are the Life Cycle Objectives (LCO) and Life Cycle Architecture (LCA). The
system definition elements have to satisfy specific completion criteria at each anchor point.
• The system definition elements are strongly integrated and a strong traceability thread ties the various sections:

e.g., the System Definition (documented in the SSRD) is a refinement of the Statement of Purpose (documented in
the OCD). Therefore, to enforce conceptual integrity, it is essential that team members work collaboratively,
particularly on strongly related sections.

• Due to the strong interdependencies, it may be a good idea to follow some order when producing the deliverables,
at least initially: e.g., write core sections of the OCD before the SSRD. During successive iterations, the documents
generally should not be traversed in a linear fashion. Forward consistency should always be enforced (if an Entity
is added to the Entity Model, then it should be examined as to how it affects the Component Model). Backward
consistency can be less strongly enforced, but is useful to do where feasible.

• Strongly dependent sections are indicated by [Consistent with DDD x.x.x] where DDD is the LCO/LCA
deliverable, and x.x.x is the section number. When reviewing the deliverables and checking the overall conceptual
integrity, it is very helpful to review strongly connected sections in sequence (e.g., OCD: Statement of Purpose,
SSRD: System Definition), as opposed to reviewing the deliverables in a linear fashion.

• Conceptual integrity and consistency between the various deliverables, at a given milestone (LCO/LCA), is
critical. In particular, a system definition element should not be "incomplete" with respect to the remaining ones.
For instance, if the SSRD specifies more requirements, than the architecture described in the SSAD supports, but
the FRD claims that the architecture will satisfy all the requirements, the SSAD would be considered incomplete.
It is important to reconcile the deliverables, and make sure that one deliverable is not "one iteration ahead" of the
other deliverables.

• The general differences between the LCO and the LCA are as follows:
Life Cycle Objectives (LCO):
• less structured, with information moving around
• focus on the strategy or "vision" (e.g., for the Life Cycle Plan), as opposed to the details
• could have some mismatches (indicating unresolved issues or items)
• no need for complete forward and backward traceability
• may still include "possible" or "potential" elements (e.g., Entities, Components, …)
• some sections could be left as TBD
Life Cycle Architecture (LCA):
• more formal, with everything tracing upward and downward
• no major unresolved issues or items, and closure mechanisms identified for any unresolved issues or items

(e.g., “detailed data entry capabilities will be specified once the Library chooses a Forms Management
package on February 15th”)

• no more TBD's
• there should no longer be any "possible" or "potential" elements (e.g., Entities, Components, …)
• no more superfluous, unreferenced items: each element (e.g., Entities, Components, …) either should

reference, or be referenced by another element. Items that are not referenced should be eliminated, or
documented as irrelevant

For further information: Refer to the completion criteria for each deliverable, for each phase.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 3/94

• The Completion Criteria for each LCO/LCA deliverable, within the LCO/LCA phase respectively, can be used as
"Exit criteria". There is no mandated number of pages per se, for a deliverable. Each package should meet all the
phase completion criteria, and thus should thus contain the pertinent information. It is generally desirable to
minimize the amount of detail, through conciseness: "less is more", as long as it conveys the appropriate amount of
information, and meets all the exit criteria.

• The level of detail of each section should be risk-driven. For example, interface specifications should be rigorously
specified, as it is very risky to leave them ambiguous. However, one should avoid premature rigorous specification
of user screen layouts, as it is risky to lock these in before users have had a chance to interact with them; and GUI-
builder tools make it a low risk to iterate the screens with the users.

• Use visual models (whenever possible):
• OCD/SSRD: block diagrams, context diagrams
• OCD/SSRD/SSAD: UML diagrams
• LCP: tables, Gantt charts, PERT charts

• Repetition of information within the various deliverables should be discouraged, and referencing the information
should be encouraged. It is not enough to make things consistent by SIMPLY repeating sections. For example,
there is no need to repeat the System Requirements in the Feasibility Rationale. The feasibility rationale should
establish the feasibility and consistency of the operational concept, requirements, architecture, prototypes and
plans, with respect to particular (referenced) System Requirements. While redundancy, among other deficiencies,
leads to lengthy and repetitious documentation and creates extra update-consistency problems, referencing items
enforces traceability.

• When referencing, avoid having:
• “broken” or invalid references (e.g., references to something, such as Project Goal, Entity, Component, etc.,

that does not exist)
• “blind” or vague references (e.g., “See FRD 2.2.3”— What exactly in FRD 2.2.3 is relevant?).

• The referenced material must be included with the referencing document, to be available to the reviewers: e.g., if
the System Responsibilities in the OCD reference WinWin artifacts, then the WinWin report should be included as
an appendix to the OCD.

• If assumptions are made in the LCO/LCA package, it is important to reality-check the assumptions as much as
possible. If you say somewhere "This assumes that COTS package will do X", determine the likelihood that the
assumption is true. If the likelihood is low, identify this as a risk, and determine a risk management strategy for it.
Avoid introducing non-customer and non-domain-expert assumptions.

• Do not just include text from the guidelines or outside sources in your deliverables, without relating the material to
your project's specifics: no need to repeat in great detail software engineering principles and explanations taken
from elsewhere.

General Tool Guidelines
• Rational Rose is the standard tool to develop the diagrams. Rose may not directly support all the diagrams (e.g.,

block diagrams, layered views). Some add-ins provide additional capabilities (e.g., ErWin for E-R diagrams).
However, avoid having your architecture models developed with a large variety of tools, ranging from picture
editing programs to other specialized software (e.g., flowcharting software).

General Formatting Guidelines
• There should be an explanation after each heading for the following subheadings: i.e., no two headings should be

immediately next to each other.
• All documents should have the following information on the cover page

– Document Title
– Project Title
– Team
– Team Members and Roles
– Date
– Document Version Control Information

• In general, use an outline form, e.g., for Organization Activities, instead of wordy paragraphs. In an outline form,
items are easier to read, and important points stand out.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 4/94

• Use numbered lists as opposed to bulleted lists to be able to reference items by their number, e.g., 'Organization
Goal #2', which helps traceability.

• Include captions for each figure, table, etc., to encourage referencing and enforce traceability.

Final Remark
We can only suggest outlines for the LCO/LCA deliverables: in particular, there is no one-size-fits-all Requirements
Description, or Life Cycle Plan structure. Authors should consider all of the items in the outline. If some of them are
not applicable, it should be noted as "Not applicable" or "N/A" for future reference with some justification as to why
this is so. Do not feel compelled to artificially create information simply to fill out a section that is not applicable to
your project. Similarly, the document outline can be expanded if there is a need. However, it is not recommended to
radically change the ordering of the various sections and to freely delete critical sections. The overriding goal is clear,
concise communication. Standardized guidelines help with this: if you make substantial alterations, make sure they are
clear, and well justified. Haphazard documentation is a major point of project failure.

Conventions Used
The following conventions are used in the guidelines.
Common Pitfalls: to warn against common mistakes
CS577 guidelines: In general, the document templates are applicable to general classes of large software projects.
However, CS 577 guidelines tailored to the types and sizes of projects in CS577a/b.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 5/94

Operational Concept Description (OCD)

Purpose
• Describe the overall context of the system to be developed, why it's being built, what exists now, and where the

project is starting from
• Describe to the stakeholders of the system to be developed (“developed” is meant to include such terms as

“enhanced”, “updated”, “re-engineered”, "automated"), how the system will work in practice once it is deployed
• Enable the operational stakeholders to evolve knowledgeably from their current operational concept to the new

operational concept, and to collaboratively adapt the operational concept as developments arise, to make clear the
value of developing the new system

Completion Criteria
Below are the completion criteria for the Operational Concept Description for the two phases:
• Life Cycle Objectives (Inception Phase)
• Life Cycle Architecture (Elaboration Phase)

Life Cycle Objectives (LCO)
• Top-level system objectives and scope
§ Organization Context and Goals
§ Current system overview and shortfalls

§ System Boundary: project focus
§ System Environment
§ Evolution Considerations

• Operational concept
§ Operational stakeholders identified
§ Organizational responsibilities determined and coordinated with clients
§ Main operational scenarios coordinated with clients
§ System Concept

• Shared vision and context for stakeholders
§ Common vision and goals for system and its evolution
§ Common language and understanding of system constraints
§ Operational concept satisfiable by at least one system/software architecture
§ Capabilities rationalized by business case analysis in Feasibility Rationale

Life Cycle Architecture (LCA)
• Elaboration of system objectives and scope by system increment
• Elaboration of operational concept by system increment
• All stakeholder-critical nominal and off-nominal scenarios coordinated with clients
• Operational concept satisfiable by the architecture in the SSAD
• Tracing between Project Goals, and Organization Goals and Activities
• Tracing between System Responsibilities and Project Goals and Organization Activities

Intended Audience
• Customer for Domain Description
• Domain Expert for initial System Analysis
• Use language and define CDL appropriate to intended audience

Participants
• Same stakeholders as WinWin negotiation
• Establish a concept of operation that all stakeholders agree upon

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 6/94

High-Level Dependencies
• WinWin negotiations give:
§ System Responsibilities (Priority and Rationale for proposed changes)
§ Changes considered but not included
§ Terms for the Domain Description
§ Project Goals
§ Quality Goals

• OCD yields:
§ Project, System and Quality Requirements for SSRD
§ Domain Description and Initial Analysis for SSAD
§ Stakeholder and Organizational Responsibilities for LCP
§ Business Case analysis parameters for FR

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 7/94

Outline
1. Introduction

1.1 Purpose of the Operational Concept Description
1.2 References

2. Domain Description
2.1 Organization Background
2.2 Organization Goals
2.3 Description of Current System

2.3.1 Overview of Current System
2.3.2 Current System Shortfalls

2.4 Entity Model
2.5 Organization Activity Model
2.6 Interaction Matrix

3. System Analysis
3.1 Statement of Purpose

3.1.1 Overview of Proposed System
3.1.2 How the Proposed System Addresses the Current Shortfalls

3.2 Project Goals
3.3 System Responsibilities
3.4 Quality Goals
3.5 Changes Considered but Not Included

4. Concept of Operation for the Proposed System
4.1 Operational Overview

4.1.1 Operational Stakeholders
4.1.2 Organizational Relationships
4.1.3 Operational Policies and Constraints

4.2 Operational Impacts
4.3 Organizational Impacts

5. Operational Scenarios
6. Analysis Results

6.1 Summary of advantages
6.2 Summary of disadvantages/limitations
6.3. Alternatives and tradeoffs considered

7. Common Definition Language for Domain Description
8. Appendix

1. Introduction

1.1 Purpose of the Operational Concept Description
• This paragraph shall summarize the purpose and contents of this document and identify the project stakeholders

• The specific system whose operational concept is described here is: [name-of-system]
• Its operational stakeholders are: [Describe the stakeholder roles and organizations]
• Use specific names and roles

• Avoid generic introductions as much as possible: for instance, you can show how your particular Operational
Concept Description meets the completion criteria for the given phase

Common Pitfalls:
• Simply repeating the purpose of the document from the guidelines

1.2 References
• Provide complete citations to all documents, meetings and external tools referenced or used in the preparation of

this document

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 8/94

• This should be done in such a manner that the process and information used can be traced and used to reconstruct
the document if necessary

2. Domain Description
The Domain Description (which focuses on the current system and organization) establishes the context for the system
to be developed and determine what is or is not relevant to the project. It consists of several views, which describe the
domain of the project (i.e., the context in which the project will be developed and deployed, including the organization,
stakeholders, etc.) at various levels of generality from the customer's and domain expert's perspective. It provides the
distilled rationale for:
• Why the system is being built
• What overall organization goals and activities the proposed system will support and be responsible for when

deployed
• Where the project is starting from (i.e. "what" is there at present to build from, what is missing, and needed, etc.)
The goal is not to describe the entire organization, rather to faithfully sample enough information to provide a working
context for the System Analysis (“What” the proposed system is precisely). The working context serves to avoid
building a system that is too general by limiting its scope to what adds value for the critical stakeholders. This provides
a tangible means to measure what is or is not relevant to the project.
All sections of the Domain Description should be written in a language understood by all the stakeholders in the project
(with particular customers and domain experts). This generally means describing concepts at a high, non-technical
level.

CS 577 Guidelines
Don't go too high in the organization for your project's organization background and goals. USC's overall goals may
include improving USC's rank in lists of the top U.S. universities, but it is too hard to relate the project goals for a
multimedia archive to such organization goals. We recommend using USC's Digital Library Initiatives as an
appropriate organizational context. Here is a working good statement for these initiatives:

"To make USC's reference materials more rapidly, reliably, easily and effectively accessible to the USC
community, subject to appropriate information protection, fairness, and economic constraints."

At this level of organization goals, the mapping to CS 577 project goals is more meaningful and straightforward. For
your application, it is appropriate to elaborate these overall organizational goals to relate to your project goals (e.g.,
defining an aspect of "easily accessible" as bringing the reference materials to the user rather than vice versa), or to
particular goals of your client's organization (e.g., Seaver Science Library, Marshall School of Business Library).

2.1 Organization Background
• Provide brief overview (a few sentences) of the organization (within the project's context) sponsoring the

development of this system
• Provide brief overview (a few sentences) of the organization operationally using the system (these may or may not

be the same organization)
• Include the organizations’ mission statements and/or their objectives and goals (summarize if very long or

detailed)

2.2 Organization Goals
• Identify the broad and high-level objectives and/or aspirations of the organization operationally using the system.

The goals should be relevant to, but also relatively independent from, the proposed system. System-specific goals
would be documented as Project Goals (OCD 3.2)

• You want to include only the goals that indicate what the organization wishes to achieve by having the proposed
system, e.g., improve efficiency of Inter-Library Loan borrowing

• The Organization Goals should be Measurable and Relevant (M.R.).
• Use a brief enumerated list. E.g.:

1. Improve cost … via …
2. Improve speed … via …
3. Improve quality… via …
4. Improve customer satisfaction … via …

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 9/94

Additional Guidelines:
Test Questions for M.R.: By LCA, each organization goal should be able to clearly answer:
M: "What is a measure of this goal?"
R: "Why is it relevant to the organization?"

Common Pitfalls:
• Specifying Project Goals as Organization Goals
• Not clearly indicating the Measure and/or the Relevance of the goals, to the Organization and the Proposed System
• Developers introducing Organization Goals. Organization Goals should only come from interviewing customers

and domain experts: let them describe the M. and R.
• Having superfluous organization Goals that are never referenced by Organization Activities, Project Goals, System

Responsibilities or System Requirements (they should be eliminated by the LCA).

2.3 Description of Current System
Provide a brief, high-level overview of the current operational system as it exists in the organization prior to building
the new system. Keep in mind that the current system may be manual or non-existent.

2.3.1 Overview of Current System
• Explain the current system's (if available) scope within the organization

• What the current system does
• What it does not do (avoid overlap with system shortfalls)

• Include high-level Block Diagram of current system if it exists
• Orient the content of this section strongly towards the proposed system, which will be described in the System

Analysis.
• Leave out clearly irrelevant items. E.g., the Inter-Library Loan department at USC may be interested in automating

the current manual process of Inter-Library Loan Borrowing (by which USC borrows reference material from other
libraries). In that case, there is no need to describe in great detail the Inter-Library Loan Lending process (by which
other libraries borrow items from the USC Libraries), if the latter is already automated.

2.3.2 Current System Shortfalls
• Describe limitations of the current system, in particular, how the current system does not fulfill the Organization

Goals (OCD 2.2), or does not support some of the Organization Activities (described in detail in OCD 2.5).

2.4 Entity Model
• The domain entities provide a description of the architecturally relevant "forms" that exist in the domain. Many of

these entities are relevant to the proposed system: all will also be represented, directly or in part, as components in
the proposed system. Therefore, it is vital to identify and clarify these forms as early as possible to encourage
faithfulness of the proposed system to the domain.

• The Entity Model should not include new software components (e.g., Database) or Entities (e.g., System
Administrator) introduced by the proposed system. The components in the system will often represent specific
parts of an Entity in the domain as relevant to the proposed system

• Start by reviewing Organization Background, Description of Current System and Organization Activities. Make a
list of the potential architecturally relevant entities (call this "Potential Entities")

• Some helpful questions to help identify the potential entities. Ask your customers these:
1. What are the major entities that play a role in or interact with the proposed system?
2. For each major entity, what’s its general function, role, or description?
3. For each major entity, what is its specific role in or interaction with the proposed system?

• An example of the desired level of abstraction of an entity would be the "Catalog Of Assets" within a digital
library system’s or subsystem’s collection

• For every entity that you are confident will need to be represented within the proposed system, include an Entity
Specification as follows:

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 10/94

Entity Specification template:
Identifier - Unique identifier used for traceability (e.g., E-xx)
Description -
Name -
Properties -
Activities -
Connections - (use Rational Rose Entity Relationship diagram with Entity stereotypes. Label each connection)

UML Guidelines
• Within UML, an "Entity" stereotype can be used to denote a class that is an abstraction of some real-world entity.

Within Rational Rose, either denote this with "<<text>>" text stereotype, or use a cloud stereotype image.
• Create an Entity-relationship diagram using class diagram with relationships (association, aggregation, and

inheritance). This can be global--inclusive of all entities--or can be from a particular entity's point of view and
added to that entity's specification under its Connections
• Indicate multiplicity/cardinality of connections if non-trivial

Remark:
If the current system consists of very specific sequence of activities, diagrams such as UML Activity Diagrams may be
used to detail the "activities" in the specification template of an Entity.

Common Pitfalls:
• Including the proposed system as an Entity
• Not listing a large number of possible entities before selecting which ones to include
• Using system components for the proposed system as domain entities. These do not exist until the system is built
• Including an Entity that has no direct relevance or relation to a component in the Component Model
• Having superfluous entities that are never referenced by Components (they should be eliminated by the LCA)
• Including “possible” Entities in LCA (they are acceptable at the LCO)

2.5 Organization Activity Model
• The Activity Model provides a simple overview of the organization's activities within the domain. The Activity

Model should describe only those activities that are relevant to the proposed system (e.g., activities that the
proposed system will automate or enhance). The Activity Model may include activities of the current system (if
one exists)

• Organization Activities support or carry out Organization Goals: when it's the case, note which Goal the activity
supports

• The Organization Activity Model provides the contextual basis and scope for the proposed system's behaviors, but
should not contain any particular behaviors of the proposed system (those belong to the Behavior Model)

• Avoid overly technical or implementation related activities unless they are already present in the current system
• Use a hierarchical outline form (see below): this makes it easier to identify activity boundaries
• Go no further than 3 levels of detail unless there is some particular high-risk issue needing resolution: this limits

the introduction of too much detail
• Include Activities from Entity Model specifications (OCD 2.4) (and vice versa)
• Clearly label organization activities that are policies and any significant events that may occur (e.g., Book

Callback)
• (Optional) Include high-level domain use cases from the description of the current process/system
• An example of the lowest defined level of aggregation of an activity for a digital library would be “Add an asset to

the library’s collection”

Level 1 Activity
Level 2 Activity

Level 3 Activity
Level 3 Activity <event>
...

Level 2 Activity <policy>

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 11/94

...
Level 2 Activity
...

Level 1 Activity
...
...
Common Pitfalls:
• Including system behaviors (of the proposed system) as activities in the Organization Activity model
• Having superfluous activities that are not referenced by anything later. These should be eliminated by the LCA
• Including Organization Activities that do not reference any Organization Goals. These should be eliminated by the

LCA

2.6 Interaction Matrix
• The Interaction Matrix shows how the Organization activities and Domain entities interact and helps assign

activities to entities and vice versa
• It is useful for traceability and consistency checking
• [Consistent with Entity Model (OCD 2.4)]
• [Consistent with Organization Activity Model (OCD 2.5)]

Activity 1 Activity 2 … Activity m
Entity 1 X
Entity 2 X
…
Entity n

3. System Analysis
In this section, the focus is on the proposed system. The System Analysis describes:
• What the proposed system is
• How Well it should perform
• NOT How to implement it in software

Figure 1 Context Diagram

3.1 Statement of Purpose
• The statement of purpose provides a brief overview of the proposed system, and explains how the new system will

address the current system's shortfalls.

Context Diagram

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 12/94

3.1.1 Overview of Proposed System
• Provide a brief synopsis of the overall system. It should be more general than a problem statement (it does not

need to specify a problem). The statement of purpose should not have architectural indications.
• Include a Context Diagram of the proposed system
• A Context Diagram (See Figure 1) is a graphical representation of the scope of the project. It shows the completed

project as a single “black box” and shows the information that flows between the system and major external
entities. External entities are either entities which currently exist, or that will need to be introduced after the system
is deployed (e.g., system administrator).

• The Context Diagram for the proposed system avoids making any premature design decisions by representing the
proposed system as a "black box", showing only how external entities might be used as inputs and outputs (thereby
indicating what kinds of interfaces will be needed)

• The Context Diagram for the proposed system should include entities for all the key operational stakeholders
described below (OCD 4.1.1)

• [Consistent with Organization Background (OCD 2.1)]
• [Consistent with Organization Goals (OCD 2.2)]

Common Pitfalls:
• Including a System Block Diagram: a block diagram clearly includes top-level designs (sometimes some low-level

too), which is too early in System Analysis. A System Block Diagram belongs in the System Definition (SSRD
2.1)

• Simply listing System Responsibilities and Behaviors as a Statement of Purpose
• Not including on the Context Diagram (OCD 3.1.1) all the key operational stakeholders
• Confusing the Statement of Purpose with Organization Goals
• Including architectural decisions or implications (e.g., "The purpose is to design a client-server … ")
• Including too many (especially design-related) details
• Not including relevance to the Organization Background (OCD 2.1)

3.1.2 How the Proposed System Addresses the Current Shortfalls
• Describe how the successful development and installation of the proposed system would address the shortfalls in

the current system and allow the Organization to meet its Goals. Note that the proposed system can either, extend,
enhance or replace the current system.

• [Consistent with Current System Shortfalls (OCD 2.3.2)]
• [Consistent with Organization Goals (OCD 2.2)]

Common Pitfalls:
• Confusing with Organization Goals
• Not including relevance to the Organization Background (OCD 2.1)

3.2 Project Goals
• Project Goals are factors, project-level constraints and assumptions that influence or contribute to the eventual

outcome of the project: such as legacy code or systems, computer system compatibility constraints, COTS
compatibility constraints, budget limits and time deadlines. Project Goals may carry out or support Organization
Goals and Activities.

• Project-level constraints correspond to the Constraints in the Spiral Model cycles; System Responsibilities and
Quality Goals correspond with spiral model Objectives.

• Project Goals are separate from System Responsibilities: Project Goals usually affect many parts of the system,
whereas System Responsibilities address more local and specific areas

• Project Goals should be M.R.S. (Measurable, Relevant, Specific). Note that the project goals may also be relative.
• Defer Quality Goals till OCD 3.4
• Use a simple numbered list (as opposed to bulleted list)
• Reference Win conditions and agreements from the WinWin negotiation as applicable.
• An example of a Project Goal would be the development of an Initial Operational Capability in one semester.

• M: Meets IOC guidelines

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 13/94

• R: Implement proposed system providing initial capability to customer
• S: Meets specific IOC guidelines in one semester

Additional Guidelines:
Test Questions:
M: "How is the goal measured with respect to the proposed system?"
R: "Is this related to any Organization Goal or any external constraint?"
S: "What specific parts of the system is this relevant to? What are the specific acceptable levels or thresholds with
respect to the measures used? What specific parts of the system are to be measured?"

Common Pitfalls:
• Including Organization Goals as Project Goals
• Including Quality Goals as Project Goals (defer those till OCD 3.4)
• Including System Responsibilities as Project Goals: as a rule of thumb, Project Goals are Project Constraints
• Including Project Goals that do not reference Organization Goals or Activities
• Including Project Goals that are not referenced by Project Requirements

3.3 System Responsibilities
• This section describes overall what products and services the domain expert ideally expects from the proposed

system with respect to their organization, including desired modifications to the current system.
• System Responsibilities provide a high level overview of broad categories of system behaviors, as opposed to an

operational breakdown provided by System Requirements. System Responsibilities should realize high-level
activities in the Organization Activity Model (Reference as appropriate).

• System Responsibilities correspond with spiral model Objectives.
• System Responsibilities should be testable (so you can determine if the responsibility has been handled)
• Avoid specifics relating to technology and implementations: focus on "what" the system should do, not "how" it

will do it. It may include a "wish list" of desirable characteristics, e.g., providing automated support for specific
organizational activities (OCD 2.5) that are in line with the Organization Goals (OCD 2.2).

• System Responsibilities may include reference to WinWin artifacts (if applicable)
• For each System Responsibility, include a System Responsibility Specification, using the following template.
• An example of the desired level of aggregation of a System Responsibility for a digital library asset collection

would be “For geographically-oriented assets, catalog attributes covering the asset’s location, and associated
political and geographic regions.”

• [Consistent with Organization Activity Model (OCD 2.5)]

System Responsibility Specification Template
Identifier - Unique identifier for traceability (e.g., SR-xx)
Description -
Name -
Priority -
Rationale - Reference corresponding goals from the Organization Goals (OCD 2.2)
Relates to - Reference corresponding activities from the Organization Activity Model (OCD 2.5)

Additional Guidelines
• Describe a few system responsibilities and work with domain experts, clients and users, to clarify and refine them.

As more responsibilities are documented, architects get a better idea of how the domain experts view the proposed
system (I.e. the conceptual system from their perspective).

• Each system responsibility may require several iterations. Consistency, completeness, redundancy are not issues at
this point.

• Use the “just do it” approach to eliminate the pressure to get it all right on the first pass (like writing a rough draft
for a term paper). “Go with what you know” and plan to iterate it and make adjustments.

• Some helpful questions to determine System Responsibilities and sub-responsibilities:

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 14/94

• “What in the Organization Activities and Entities in the domain description do we want represented with
technology or have automated?”

• "What do we need to carry out to achieve the organization goals?" to find what activities need to be carried out
• “What do you need to do this?” to find out information required to carry out a responsibility
• “What is involved with this?” to discover sub-responsibilities and the steps required to fulfill them
• “Can you give me an example of this?” to draw out scenarios of desired system operations

• Some counterproductive questions to avoid:
• Don’t worry about overlapping responsibilities:

• “Didn't we already cover this?”
• Don't worry about implementation issues (they are not relevant to clients)

• “How can we possibly implement that?”
• Don’t challenge feasibility (Relevance is determined by clients)

• “Do we really need this?”
• Don't get too hung up on measurability details:

• "How will we measure the goodness of a browser?"

Common Pitfalls:
• Including System Requirements as System Responsibilities. Those belong in SSRD 2.3
• Including System Behaviors as System Responsibilities. Those belong in SSAD 2.2
• Including too many System Responsibilities for a relatively small system (some of them may be either System

Requirements or System Behaviors)

3.4 Quality Goals
• Describe the desired qualities of the System (i.e., "how well" the system should perform a given responsibility).
• Quality Goals should be M.R.S. (Measurable, Relevant, Specific). Measures should specify the unit of

measurement and the conditions in which the measurement should be taken (e.g., normal operations vs. peak-load
response time). Where appropriate, include both desired and acceptable levels. Again, don't get too hung up on
measurability details.

• Indicate how the Quality Goals are relevant to the Organization Goals, System Responsibilities and Project Goals
• Quality Goals correspond with spiral model Objectives.
• At this point, you need not worry whether the Quality Goals are achievable. You will need to do that by the time

you refine Quality Goals into Quality Attribute Requirements (SSRD 3).
• It is important at this point, not to overburden the system's analysis with Quality Goals that are not expressly

requested by the customer.
• Quality Attribute Requirements (SSRD 3.0) are supposed to be more specific than the Quality Goals (OCD 3.4).

However, it is often recommended to specify both acceptable and desired quality levels, and leave the goals
flexible to produce the best balance among Quality Attribute Requirements (since some Quality Attribute
Requirements conflict with each other, e.g., performance and fault-tolerance).

• If the Quality Goal is well-defined, it is possible to simply refer to it in the OCD, without repeating it, in the SSRD
• [Consistent with Organization Goals (OCD 2.2)]
• [Consistent with Quality Attribute Requirements (SSRD 3)]

Common Pitfalls:
• Overburdening the system with Quality Goals that are not expressly requested by the customer
• Including Quality Goals that do not reference Project Goals or Organization Goals
• Goals not satisfying the M.R.S. criteria

3.5 Changes Considered but Not Included
• In general, the results of the WinWin requirements negotiation activity will be to drop or defer some capabilities

from the initially proposed system. It is valuable to capture these for future reference, along with the rationale for
dropping or deferring them. Some of those changes considered but not included may become Evolution
Requirements.

• Include Reference to WinWin artifact (if applicable)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 15/94

• You may include threshold for including some of the deferred capabilities (e.g., depending on the availability of a
specific COTS package, etc.)

• [Consistent with Evolution Requirements (SSRD 5)]

4. Concept of Operation for the Proposed System
This section presents a proposed new concept of operation and describes how the system’s operational stakeholders
(users, operators, maintainers, inter-operators, managers, etc.) will interact with the system, and how they will interact
with each other in the context of the system.

4.1 Operational Overview
• Describe the proposed concept of operation
• You may reference the Context Diagram for the proposed system from OCD 3.1.1: at this point, a detailed system

block diagram is too much detail.
• [Consistent with Overview of Proposed System (OCD 3.1.1)]

Common Pitfalls:
• Including operational stakeholders that are not reflected in the Context Diagram (OCD 3.1.1).

4.1.1 Operational Stakeholders
• Describe the operational stakeholders (e.g., users, system administrator, etc…) who will interact with the new or

modified system, including, as applicable, organizational structures, training/skills, responsibilities, and
interactions with one another.

• Do not include development-related stakeholders and organizations
• For each stakeholder, list:

• Major activities performed by that stakeholder
• Assumptions about User Characteristics

• Frequency of usage
• Expected expertise (with software systems and the application domain)

• Should be consistent with WinWin stakeholders (stakeholders such as developers and customers may not be
operational stakeholders)

• [Consistent with Activity Model (OCD2.5)]
• [Consistent with Stakeholder Responsibilities (LCP 3.2)]

Common Pitfalls:
• Including development-related agents and stakeholders

4.1.2 Organizational Relationships
• Include a specialized (i.e., derived from the main organizational chart) organization chart indicating the relations

among the system's operational stakeholders’ management hierarchies.
• This serves to verify the following:

• Project scope fits within client’s authority scope or cross organizational boundaries
• Solution does not introduce organizational friction
• Solution does not shift power, confuses lines of authority nor puts outside parties on critical path for regular

operational procedures
• The operational stakeholders' development-related responsibilities, as well as development-related stakeholders,

during the various phases of the project life cycle, will be defined in LCP 3.2
• Organizational Responsibilities
• Global Organization Charts
• Organizational Commitment Responsibilities
• Stakeholder Responsibilities

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 16/94

Common Pitfalls:
• Mixing class hierarchies and reporting hierarchies in an Organization Chart
• Mixing people and organization units in the same Organization Chart
• Including development-related agents and stakeholders

4.1.3 Operational Policies and Constraints
• Include additional proposed policies and constraints for usage of the new capabilities (e.g., policies on information

access, borrowing of materials, copyright protection, etc.)
• You may also reference any existing organization policies (include in the Appendix)

4.2 Operational Impacts
• List impacts of the new operational concept on operational personnel, procedures, performance and management

functions due to parallel operation of new and existing system, during transition, and likely evolution of roles and
responsibilities, thereafter.

4.3 Organizational Impacts
Describe anticipated organizational impacts on the user, customer, once the system is in operation. These impacts may
include modification of responsibilities; addition or elimination of responsibilities or positions; need for training or
retraining; and changes in number, skill levels, position identifiers, or location of personnel in various modes of
operation.

5. Operational Scenarios
• This section should describe a set of scenarios that illustrate, from the user's perspective, what will be experienced

when utilizing the system under various situations.
• Scenarios should illustrate the role of the new or modified system, its interaction with users, its interface to other

systems, and modes identified for the system. The scenarios shall include events, actions, stimuli, information,
interactions, etc., as applicable.

• Use Scenario Specification Template
• Include

- Mainstream scenarios: Main operational scenarios
- Variant Scenarios: Other ways of performing the same functions, e.g., using a command line interface as

opposed to a graphical user interface
- Exception-Handling Scenarios: Error handling, recovery, etc… in the event of system error, data corruption
- Support Scenarios: Performing major system administration/backup functions, etc.

Scenario Specification Template:
- Identifier: Unique identifier for traceability (e.g., SC-xx)
- Name
- Event
- Action
- Stimuli
- Information
- Interactions
- Prototype Screen (if applicable)

Scenarios are defined as follows [Potts et al, 1994]:
In the broad sense, a scenario is simply a proposed specific use of the system. More specifically, a scenario is a
description of one or more end-to-end transactions involving the required system and its environment. Scenarios can
be documented in different ways, depending up on the level of detail needed. The simplest form is a use case, which
consists merely of a short description with a number attached. More detailed forms are called scripts. These are
usually represented as tables or diagrams and involve identifying an action and the agent (doer) of the action.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 17/94

Although scenarios are useful in acquiring and validating requirements, they are usually not themselves requirements,
because they describe the system's behavior only in specific situations; a requirement, on the other hand, usually
describes what the system should do in general.
• Include early prototype screenshots (could be annotated or photo-edited screenshots or mockups)
• This section may reference prototype screens indicated in SSRD 4.1.1 (Graphical User Interfaces) or vice versa.

Inclusion in SSRD 4.1.1 is more appropriate when more than one scenario uses the same prototype screen
• Other diagrams, such as storyboards (low-fidelity prototypes) may be also used as necessary
• Use Case scenarios are also acceptable

Common Pitfalls:
• Simply including screen shots without any scenario specifications
• Not including screen shots

6. Analysis Results

6.1 Summary of advantages
This paragraph shall provide a qualitative and quantitative summary of the advantages to be obtained from the new or
modified system with respect to the Organization Goals and Activities. This summary shall include new capabilities,
enhanced capabilities, and improved performance, as applicable, and their relationship to deficiencies identified in the
Current System Shortfalls, as well as the rationale for new capabilities. For a quantitative analysis, you may reference
the Business Case Analysis from the FRD 2.1.

You may also describe the relationship of this system with any other systems if they exist. Specify if this system is
intended to be stand-alone, used as a component in a larger product, or one of a family of products in a product line. If
the latter, this section discusses the relationship of this system to the larger product or to the product line.

6.2 Summary of disadvantages/limitations
This paragraph shall provide a qualitative and quantitative summary of potential disadvantages or limitations of the
new or modified system. These disadvantages and limitations shall include, as applicable, degraded or missing
capabilities, degraded or less-than-desired performance, greater-than-desired use of computer hardware resources,
undesirable operational impacts, conflicts with user assumptions, and other constraints. These are used either for
stakeholder expectations management or as a basis for further negotiation of system capabilities or tradeoffs.

6.3. Alternatives and tradeoffs considered
This paragraph shall identify and describe major alternatives for the concept of operation of the system, their
characteristics, the tradeoffs among them, and rationale for the decisions reached.

Common Pitfalls:
Discussing alternative architectures or designs: those should be discussed in FRD 4.

7. Common Definition Language for Domain Description
• Include an alphabetical listing of all uncommon or organization-specific terms, acronyms, abbreviations, and their

meanings and definitions, to understand the Domain Description
• Avoid implementation technology terms at this point
• CDL items are often answers to questions that you ask to the client: “What does this mean?”

8. Appendix
• As applicable, each appendix shall be referenced in the main body of the document where the data would normally

have been provided.
• Include supporting documentation or pointers to electronic files containing:

• Policies (e.g., applicable Copyright Laws)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 18/94

• Descriptions of capabilities of similar systems
• Additional background information
• Additional analysis results
• Additional prototyping results

• Describe additional prototyping results using the template in (Appendix A). Adapt as necessary
• Include WinWin negotiation reports and analysis attachments as applicable

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 19/94

System and Software Requirements Definition (SSRD)

Purpose
• Describe capability requirements (both nominal and off-nominal): i.e., the fundamental subject matter of the

system, measured by concrete means like data values, decision making logic and algorithms.
• Describe Quality Attribute Requirements (sometimes referred to as Non-functional requirements): i.e., the

behavioral properties that the specified functions must have, such as performance, usability, etc. Quality Attribute
Requirements should be assigned a unit of measurement

• Describe Global constraints: requirements and constraints that apply to the system as a whole. For example, the
customer for the system is a global constraint, as is the Purpose of the System. Those constraints include:
• Interface Requirements
• Environment and Data Requirements

• Mandates and instructions on how the system must be implemented ("must", "shall", "will"), with respect to the
general technology

Completion Criteria
Below are the completion criteria for the System and Software Requirements Definition for the two phases:
• Life Cycle Objectives (Inception Phase)
• Life Cycle Architecture (Elaboration Phase)

Life Cycle Objectives (LCO)
• Top-level capabilities, interfaces, quality attribute levels, including:
§ Growth vectors (evolution requirements)
§ Priorities

• Stakeholders’ concurrence on essentials
• Requirements satisfiable by at least one system/software architecture

Life Cycle Architecture (LCA)
• Elaboration of capabilities, interfaces, quality attributes by iteration
§ Resolution of TBD's (to-be-determined items)
§ Elaboration of evolution requirements

• Stakeholders’ concurrence on their priority concerns (prioritization)
• Traces to SSAD (and indirectly to FRD, LCP)
• Requirements satisfiable by the architecture in the SSAD

Intended audience
• Domain expert and Customer (decision makers)
• Implementers and Architects

Participants
Same stakeholders as WinWin negotiation

High-Level Dependencies
• SSRD depends on WinWin taxonomy
§ Outline of SSRD evolves from taxonomy
§ There is no one-size-fits-all taxonomy or requirements description
§ Importance of adapting taxonomy to domain

• SSRD depends on OCD for:
§ Statement of Purpose
§ Project Goals
§ System Responsibilities

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 20/94

§ Evolution Requirements (Changes Considered but Not Included)
• SSRD depends on prototype for:
§ User interface requirements

• Additional documents depend on SSRD:
§ SSAD to obtain (and consistency trace):
Ø System Requirements
Ø Project Requirements

§ LCP to relate requirement priorities to system increments or to requirements to be dropped in a design-to-
cost/schedule development plan

§ FRD to check for satisfaction of:
Ø Capability Requirements
Ø Interface Requirements
Ø Quality Requirements
Ø Evolution Requirements

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 21/94

Outline
1. Introduction

1.1 Purpose of the System and Software Requirements Definition
1.2 References

2. Capability Requirements
2.1 System Definition
2.2 Project Requirements
2.3 System Requirements

2.3.1 Nominal Requirements
2.3.2 Off-Nominal Requirements

3. Quality Attribute Requirements
4. System Interface Requirements

4.1 User Interface Requirements
4.1.1 Graphical User Interface Requirements
4.1.2 Command-Line Interface Requirements
4.1.3 Application Programming Interface Requirements
4.1.4 Diagnostics Requirements

4.2 Hardware Interface Requirements
4.3 Communications Interface Requirements
4.4 Other Software Interface Requirements

4.4.1 External Interface Requirements
4.4.2 Internal Interface Requirements
4.4.3 Internal Data Requirements

5. Environment and Data Requirements
5.1 Design and Construction Constraints and Requirements

5.1.1 Tools
5.1.2 Programming Languages
5.1.3 Computer Resource Requirements

5.1.3.1 Computer Hardware Requirements
5.1.3.2 Computer Hardware Resource Utilization Requirements
5.1.3.3 Computer Software Requirements
5.1.3.4 Computer Communication Requirements

5.1.4 Standards Compliance Requirements
5.2 Packaging Requirements
5.3 Implementation Requirements
5.4 Software Support Environment Requirements

6. Evolution Requirements
6.1 Capability Evolution Requirements
6.2 Interface Evolution Requirements
6.3 Technology Evolution Requirements
6.4 Environment and Workload Evolution Requirements

6.4.1 Workload Characterization
6.4.2 Data Storage Characteristics

7. Common Definition Language for Requirements
8. Appendix

1. Introduction

1.1 Purpose of the System and Software Requirements Definition
• Summarize the purpose and contents of this document with respect to the particular project and people involved
• Avoid generic introductions as much as possible: for instance, you can show how your particular System and

Software Requirements Definition meets the completion criteria for the given phase

Common Pitfalls:

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 22/94

• Simply repeating the purpose of the document from the guidelines

1.2 References
• Provide complete citations to prior and current related work and artifacts, documents, meetings and external tools

referenced or used in the preparation of this document
• Useful for consistency checking and traceability

2. Capability Requirements
This section describes the capability requirements of the proposed system.

2.1 System Definition
• Provide a brief overview of what the software system is. This could consist of enumerating at a high-level the

various components or modules of the system.
• The System Definition should be a refinement of the Statement of Purpose (OCD 3.1). The System Definition

needs to focus on what the system does with respect to the technology that will do it, and therefore, may introduce
very high-level design indications

• Include a System Block Diagram. The System Block Diagram is a refinement of the Context Diagram for the
proposed system (OCD 3.1.1). The System Block Diagram, as opposed to the System Context Diagram, need not
treat the system as a "black box", but can identify major technology components (e.g., Web server).

• The block diagram should clearly identify the boundaries of the system. Note that the system boundary was
inherently specified in the Context Diagram (OCD 3.1.1) by treating the system as "black box".

• Example: "The proposed system is a web-based client-server scheduling system … "
• [Consistent with Statement of Purpose (OCD 3.1)]

Common Pitfalls:
• Not tracing back the System Definition from the Statement of Purpose (OCD 3.1.1)
• Simply repeating the System Responsibilities or the System Requirements as a System Definition
• Too much detail in the System Definition
• Not clearly providing high-level design indications
• Not including a System Block Diagram

2.2 Project Requirements
• Project Requirements are general constraints and mandates placed upon the design team, as well as non-negotiable

global constraints: e.g., solution constraints on the way that the problem must be solved, such as a mandated
technology. Project Requirements could summarize process-related considerations from the Life Cycle Plan such
as preliminary Schedule and Budget considerations.

• Project Requirements are such that, if they were left unmet, then the proposed system would not be acceptable or
would not satisfy Win conditions for the success-critical stakeholders.

• Project Requirements should be a refinement of Project Goals (OCD 3.2): Include reference to the corresponding
Project Goal

• Project Requirements should be M.A.R.S. (Measurable, Achievable, Relevant, Specific)
• Defer Project Requirements about "how well" the system should perform to the Quality Attribute Requirements

section (SSRD 3)
• Example: "The system shall use the Microsoft Active Server Pages technology"
• Example: "The system must have the core capabilities [specify which ones] by IOC within twelve weeks"

Common Pitfalls:
• Including Quality Attribute Requirements as Project Requirements. Those belong in SSRD 3.
• Introducing Project Requirements that do not parallel or trace back from Project Goals (OCD 3.2). One Project

Goal (OCD 3.2) may lead to several Project Requirements (SSRD 2.2)
• Introducing Project Requirements not mandated by the customer
• Introducing superfluous Project Requirements that are not referenced by System Requirements

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 23/94

• Not relating each Project Requirement to the corresponding Project Goal

Additional Guidelines:
Project Requirements should be able to answer the following Test Questions:
M: "How is the requirement measurable and testable with respect to the proposed system?"
A: "How must this requirement be realized in the system (what are the general technology considerations)?"
R: "Is this requirement relevant to the proposed system?"
R: "Does this requirement achieve any Project Goal?"
S: "What are the specific details, values, or conditions that must be measured to test the satisfaction of this
requirement?"

2.3 System Requirements
• System Requirements should be a refinement of System Responsibilities (OCD 3.3). They need to trace from and

parallel System Responsibilities. Each System Responsibility must translate into at least one System Requirement
(be sure to reference which one)

• System Requirements need high-level design specifics (i.e., what and how it must be implemented generally, and
how the system will work)

Common Pitfalls:
• Confusing between Operational Modes and sub-systems
• Confusing between Operational Modes and Off-Nominal Requirements
• Confusing between modes and states
• Including Quality Attribute Requirements ("how well the system does something") as functional System

Requirements ("what the system is to do")
• Including System Requirements that do not parallel or trace back from System Responsibilities (OCD 3.3). One

System Responsibility may lead to several System Requirements
• Including System Behaviors as System Requirements: those belong in the Behavior Model (SSAD 2.2)

2.3.1 Nominal Requirements
• Include Nominal Functional Requirements or System Responsibilities
• During LCO, include only major requirements
• During LCA, add less important requirements

UML Guidelines
- Actors (Quatrani 1998, p. 21-24)
- Use Cases (Quatrani 1998, p. 25-32)
- Use Case Relationships (Quatrani 1998, p. 32-34)
- Use Case Diagrams (Quatrani 1998, p. 34-38)
- Use Case Models (Quatrani 1998, p. 38-39)

• For every System Responsibility (OCD 3.3), describe the corresponding System Requirement(s)
• For every System Requirement, include a System Requirement Specification using the template listed below
• Prioritize the System Requirements, to validate that the overall life cycle strategy matches the system priorities

(FRD 3.3).

System Requirement Specification template:
- Identifier: Unique identifier used for traceability (e.g., RQ-xx)
- Name
- Description: A full description of the requirement
- Priority: How essential is this requirement to the overall system
- Rationale: Why should this requirement be part of the overall system
- Constraints:
- Inputs
- Actions

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 24/94

- Events
- Interactions
- Sources
- Outputs
- Stimuli
- Destinations
- Pre-conditions
- Post-conditions
- Use case diagrams: Include System Use Cases or top-level System Behaviors associated with this requirement
- Relates to: Reference to WinWin artifact, System Responsibility Project Goals, Quality Goals, Project

Requirements or Quality Attribute Requirements (as applicable)
• Check that every requirement has its most critical scenarios specified in the Operational Scenarios (OCD 5.0)

Common Pitfalls
• It is important that the requirements are testable and specific: if one can interpret different behavioral sequences

(not operational) from the statement of the requirement, the requirement is not well specified.
• Including System Requirements that do not reference System Responsibilities, Project Goals, Quality Goals,

Project Requirements or Quality Attribute Requirements
• If a System Requirement traces back to multiple System Responsibilities, it probably indicates that you have

included System Behaviors as System Responsibilities

2.3.2 Off-Nominal Requirements
• Include Off-Nominal Functional Requirements (i.e., Requirements on how to deal with special circumstances or

undesired events, errors, exceptions and abnormal conditions.
• Example: "If the request cannot be completed, the server should add an entry to the error log file indicating the

time the error occurred and the returned error code."
• During LCO: define high-risk off-nominal requirements; list others
• During LCA: define moderate to high-risk off-nominal requirements; list others

Well-specified off-nominal requirements make a difference between a byzantine system (e.g., System just fails or stops
responding, or gives wrong answers, without any warning), and a fault-tolerant system (e.g., a system that gives some
warning signs before failing, does an orderly shutdown, or degrades gracefully). Off-Nominal requirements may lead
into additional Quality Attribute Requirements (Availability, Reliability...)

Examples of Off-Nominal Requirements for a Business Q&A system, which allows patrons to pose queries in English,
search a local database, and also runs the same query against some common search engines.
• "If the system sends a query to a remote search engine, and the remote search engine does not respond within 10

seconds, the system should timeout and try a different search engine, up to 6 different search engines."
• "If the search results exceed 1000 hits, then the system should prompt the user to refine their query instead of

attempting to return all search results, which make take a very long time to process, or may overload the client
machine"

Special Emphasis: Modes and User Classes

Modes
• Some systems behave quite differently depending on the operational mode. If that’s the case, identify the various

modes, and organize the System Requirements (Nominal and Off-Nominal) around the operational modes, to avoid
forgetting some critical system requirement.

• For example, a voice-operated computer system may have two operational modes:
• Operational Mode: where the system is actually being used to perform productive work
• Training Mode: where the operators are training the Voice Recognition module in the system to properly

interpret their voice commands, to be saved for later use.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 25/94

The following template shows a way of organizing Section 2.3.x (this depends on whether the off-nominal
requirements are also dependent on mode) around operational modes:

2.3 System Requirements
2.3.1 Mode 1

2.3.1.1 Nominal Requirements
2.3.1.1.1 Functional Requirement 1.1
...
2.3.1.1.n Functional Requirement 1.n

2.3.1.2 Off-Nominal Requirements
...

2.3.2 Mode 2
...
2.3.m Mode m

2.3.m.1 Nominal Requirements
2.3.m.1.1 Functional Requirement m.1
...
2.3.m.1.n Functional Requirement m.n

2.3.m.2 Off-Nominal Requirements
...

User Classes
• Some systems provide different sets of functions to different classes of users. If that’s the case, it may be helpful to

organize the requirements by User Class (see below for a possible organization) to avoid forgetting some critical
system requirement

• For example, a multimedia archive system can have two user classes
• User: can access, browse and search the archive
• Administrator: can add, modify, remove items from the archive

The following template shows a way of organizing Section 2.3.x (this depends on whether the off-nominal
requirements are also dependent on user class) around user classes.

2.3 System Requirements
2.3.1 User Class 1

2.3.1.1 Nominal Requirements
2.3.1.1.1 Functional Requirement 1.1
...
2.3.1.1.n Functional Requirement 1.n

2.3.1.2 Off-Nominal Requirements
...

2.3.2 User Class 2
...
2.3.m User Class m

2.3.m.1 Nominal Requirements
2.3.m.1.1 Functional Requirement m.1
...
2.3.m.1.n Functional Requirement m.n

2.3.m.2 Off-Nominal Requirements
...

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 26/94

3. Quality Attribute Requirements
• Describe the desired qualities of the System (i.e., "how well" the system should perform a given requirement)
• Quality requirements in the SSRD should be more specific than the Quality Goals in the OCD, and indicate how

they will be achieved
• Quality Attribute Requirements should be M.A.R.S. (Measurable, Achievable, Relevant, Specific).
• Measures should specify the unit of measurement and the conditions in which the measurement should be taken.

Where appropriate, include both desired and acceptable levels and indications on how the quality will be achieved.
Note that the measure of a Quality Attribute need not be absolute but could be a function of another measure. E.g.,
if a component of the proposed system is an add-in to an existing system, an acceptable measure would be to say
that the "The spell-checker add-in should not degrade the reliability of the current editor by more than 10%".

• Trace the Quality Attribute Requirements back to the Quality Goals and to the Organization Goals.
• Note that some "non-functional" requirements could either be considered "functional requirements", as Nominal

Requirements (e.g., Security) or Off-Nominal Requirements (e.g., Reliability)
• The Feasibility Rationale will validate (FRD 2.2.3) that the Quality Requirements are achievable with the given

architecture. Do not overburden the system's design with Quality Requirements that are clearly unachievable.
• The following subsections provide possible quality attribute requirements: adapt to the project at hand, and do not

feel obliged to create a requirement for each one of them.
• [Should be consistent with OCD 3.4 (Quality Goals)]

Table 1: Stakeholder Roles / Quality Attribute Concerns Relationship

Stakeholder Roles and Primary
Responsibilities

Quality Attribute Concerns

Primary Secondary
General Public Avoid adverse system side-

effects: safety, security /
privacy.

Dependability Evolvability & Portability

Interoperator Avoid current and future
interface problems between
system and interoperating
system

Interoperability, Evolvability
& Portability

Dependability,
Performance

User Execute cost-effective
operational missions

Dependability,
Interoperability, Usability,
Performance, Evolvability &
Portability

Development Schedule

Maintainer Avoid low utility due to
obsolescence; Cost-effective
product support after
development

Evolvability & Portability Dependability

Developer Avoid nonverifiable,
inflexible, nonreusable
product; Avoid the delay of
product delivery and cost
overrun.

Evolvability & Portability,
Development Cost &
Schedule, Reusability

Dependability,
Interoperability, Usability,
Performance

Customer Avoid overrun budget and
schedule; Avoid low
utilization of the system

Development Cost &
Schedule, Performance,
Evolvability & Portability,
Reusability

Dependability,
Interoperability, Usability

Use the following taxonomy of quality attribute requirements as a checklist. Appendix C has some standard definitions
for these terms.

1. Dependability

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 27/94

1.1 Reliability/Accuracy
1.2 Correctness
1.3 Survivability/Availability
1.4 Integrity
1.5 Verifiability

2. Interoperability
3. Usability
4. Performance (Efficiency)
5. Adaptability

5.1 Verifiability
5.2 Flexibility
5.3 Expandability
5.4 Maintainability/Debuggability

6. Reusability

Common Pitfalls:
• Simply repeating Quality Goals from OCD 3.4
• Including functional System Requirements ("what the system is to do") as Quality Attribute Requirements ("how

well the system does something"). Note that in some areas (e.g., reliability, security, etc.), the distinction may not
be very clear

• Including superfluous Quality Attribute Requirements not strictly mandated by the customer (avoid having the
developers introduce additional requirements). Table 1 shows typical stakeholder concerns for Quality Attributes.

• Including superfluous Quality Attribute Requirements that do not trace back to Quality Goals or to Organization
Goals

• Including Quality Attribute Requirements not satisfying the M.A.R.S. criteria:
Example of non-measurable: "The system should be as fast as possible"
Example of non-relevant: "The system should be available 24/7", for an organization that operates only 8 hours a
day and does not want to perform activities beyond that. Many systems have been overloaded with requirements
that are not necessary or relevant: e.g., instant response time on information used on a day-to-day basis or pinpoint
accuracy when users only needed two-digit accuracy.
Example of non-specific: "The system shall be implemented as per the standards laid out by USC."
Example of non-achievable: "The system shall be available 100% of the time" for a network-based system,
knowing that the network itself may not be available 100% of the time.

Additional Guidelines:
The M.A.R.S. criteria of a quality attribute requirement are critical for ensuring that the requirement has been met.

Measurable: - Time required to perform common tasks
- Number of keystrokes required to perform common activities
- No need to maintain a hard copy log of operator interactions with the system

Achievable - Minimize the number of operations performed by the operator for a typical activity
- Minimize the need to retype the same information multiple times
- Provide the operator the ability to interrupt processing
- Provide simple and consistent of operator messages that are self-explanatory without

requiring the use of the user’s manual in the majority of the cases
- Allow the user to review and modify all input data prior to execution
- Allow the user to undo/redo their last changes
- Providing the user with the ability to customize their interface (e.g., add or remove buttons

from their toolbar)
Relevant Having a system with a high usability will definitely increase the chances of the users

acceptance of the system, since they will perceive it as reducing the number of repetitive tasks
they have to perform

Specific Currently, the manual system relies on having an Order Number on the various forms, that the
users have to remember. The system shall allow users to search by name, and tie closely related
forms. Users will not have to remember the unique identifier assigned to new Orders to lookup
an Order

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 28/94

4. System Interface Requirements
• In the following sections, describe any applicable requirements on how the software should interface with other

software systems or users for input or output. Examples of such interfaces include library routines, token streams,
shared memory, data streams, and so forth.

• Use high-level block diagrams (as applicable)

Common Pitfalls:
• Focusing only on user interface requirements and neglecting interfaces with inter-operating systems, such as

Homer, SIRSI, IBM Digital Library, HTTP servers, external databases, etc…
• Providing low-level interface requirements, for systems or sub-systems which are outside of the boundary/scope of

the proposed system, or which have implicit and standard interfaces (such as TCP/IP for a Web-based application)

4.1 User Interface Requirements
• Describe any requirements on the various User Interfaces that the system presents to the users (who may belong to

various user classes, such as end-user, programmer, etc.), which can be any of the following:
• Graphical User Interface(s) Requirements
• Command-Line Interface(s) Requirements
• Application Programming Interface(s) Requirements
• Diagnostics Requirements

4.1.1 Graphical User Interface Requirements
• Describe any Graphical User Interface (GUI) Requirements
• Include a set of screen dumps or mockups to illustrate user interface features, either directly or by reference to

Operational Scenarios (OCD 5). If the system is menu-driven, a description of all menus and their components
should be provided.

• Screen shots are useful to:
• Understand how the user works with the functionality of the system. The interface may determine if the

automated system is accepted by the user.
• Provide an "appearance" to the requirements.
• Confirm that the system requirements have been correctly understood
• Uncover forgotten system requirements.

• A prototype of the interface using some form of prototyping tool, referred to as a high-fidelity prototype, focuses
on the appearance and style of the interface. You may have to develop several prototypes to specify the look and
feel of the intended system. Include pointers to the prototypes in the requirements specification.

• It is possible to use interface sketches or scenario models, often referred to as a low-fidelity prototype.
• Replace lengthy textual explanations with screen mockups or screen shots

Common Pitfall
One common pitfall is to confuse the User Interface (as represented by the Prototype), with the behavior of the system
(i.e., the behaviors of the system become embodied in the prototype). If you cannot describe the behavior of the system,
without referring to the screen prototypes, then you have a problem:

4.1.2 Command-Line Interface Requirements
• Describe any Command-Line Interface (CLI) requirements
• For each command, provide:

• Description of all arguments
• Example values and invocations

4.1.3 Application Programming Interface Requirements
• Describe any Application Programming Interface (API) Requirements
• For each public interface function, provide:

• Name

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 29/94

• Arguments
• Return values
• Examples of invocation
• Side effects (if any)

4.1.4 Diagnostics Requirements
• Describe any requirements for obtaining debugging information or other diagnostic data

4.2 Hardware Interface Requirements
• Describe any requirements on the interfaces to hardware devices (if they are part of the system)

4.3 Communications Interface Requirements
• Describe any requirements on the interfaces with any communications devices (e.g., Network interfaces) if they

are part of the system

4.4 Other Software Interface Requirements
• Describe any requirements on the remaining software interfaces not included above

4.4.1 External Interface Requirements

4.4.2 Internal Interface Requirements
• Describe any requirements imposed on interfaces internal to the system or the internal structure of the system (e.g.,

restrictions on COTS API features). If all internal interfaces are left to the design, this fact shall be so stated.

4.4.3 Internal Data Requirements
• Describe any requirements imposed on data internal to the system. Included shall be requirements, if any, on

databases and data files to be included in the system. If all decisions about internal data are left to the design, this
fact shall be so stated.

5. Environment and Data Requirements

5.1 Construction Requirements
Describe any requirements that constrain the design and implementation of the system. These requirements may be
specified by reference to appropriate standards and specifications.

5.1.1 Tools Requirements
Describe any requirements that constrain the use of tools for the design and construction of the system (e.g., program
generators, integrated development environments, COTS tools, etc.). Include version requirements (if applicable).

5.1.2 Programming Languages Requirements
Describe constraints on the use of a particular programming language for the design and the construction of the system.

5.1.3 Computer Resource Requirements
Describe any constraints on the hardware or software to be used for the development, testing or deployment of the
system.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 30/94

Computer Hardware Requirements
Describe any requirements regarding computer hardware that must be used by the system. The requirements shall
include, as applicable, number of each type of equipment, type, size, capacity, and other required characteristics of
processors, memory, input/output devices, auxiliary storage, communications/network equipment, and other required
equipment.

Computer Hardware Resource Utilization Requirements
Describe any requirements on the system's computer hardware resource utilization, such as maximum allowable use of
processor capacity, memory capacity, input/output device capacity, auxiliary storage device capacity, and
communications/network equipment capacity. The requirements (stated, for example, as percentages of the capacity of
each computer hardware resource) shall include the conditions, if any, under which the resource utilization is to be
measured.

Computer Software Requirements
Describe any requirements regarding computer software that must be used by, or incorporated into, the system.
Examples include operating systems, database management systems, communications/ network software, utility
software, input and equipment simulators, test software, and manufacturing software. The correct nomenclature,
version, and documentation references of each such software item shall be provided.

Computer Communication Requirements
Describe any requirements concerning the computer communications that must be used by the system. Examples
include geographic locations to be linked; configuration and network topology; transmission techniques; data transfer
rates; gateways; required system use times; type and volume of data to be transmitted/received; time boundaries for
transmission/reception/response; peak volumes of data; and diagnostic features.

5.2.4 Standards Compliance Requirements
Describe any particular design or construction standards that the system must comply with, and provide a reference to
the standard.
Example: "The system’s object broker capabilities shall comply with the OMG CORBA standard".

5.3 Packaging Requirements
Describe any requirements for packaging, labeling, and handling the system for delivery
• Installation

• Assumptions
• Deployment hardware and software
• Installer experience/skills

• Post-installation requirements
• Re-packaging
• Uninstall

• Transport and delivery

5.4 Transition Requirements
• Personnel
• Training

• Development environment
• Development software
• Development hardware

• These should be consistent with personnel and training identified in the LCP 3.2

5.5 Support Requirements
• Describe any required Software Support Environments to be used for the support of the delivered system

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 31/94

6. Evolution Requirements
• Describe any requirements on the flexibility and expandability that must be provided to support anticipated areas

of growth or changes in technology
• Describe foreseeable directions of the system growth and change
• Describe how the software and data assets will be maintained

• Facilities
• Equipment
• Service-provider relations
• Maintenance levels
• Maintenance cycles
• Emergency software fixes
• Planned software upgrade releases

6.1 Capability Evolution Requirements
• Major post-IOC capability requirements
• [Consistent with Changes Considered but Not Included (OCD 3.4)]

6.2 Interface Evolution Requirements
• Describe any proposed systems with which this system must interoperate and evolve with
• How must the system adapt to interface changes?

• Organizational changes in use on system
• Personal changes (more, less, different style)
• New or expanded product lines
• Policy changes
• Organization restructure
• New/additional/dissolved relationships

• External systems
• New/additional/replace system
• Changes in external interfaces

• [Consistent with System Interface Requirements (SSRD 3.0)]

6.3 Technology Evolution Requirements

6.4 Environment and Workload Evolution Requirements

6.4.1 Workload Characterization

6.4.2 Data Storage Characteristics

7. Common Definition Language for Requirements
• Provides definitions of unfamiliar definitions, terms, and acronyms encountered or introduced during the

Requirements elicitation process: the definitions express the understanding of the participants and the audience.
• No need to repeat the Domain Description Common Definition Language

8. Appendix
• As applicable, each appendix shall be referenced in the main body of the document where the data would normally

have been provided.
• Include any supporting documentation

• Additional screen prototypes

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 32/94

• Detailed software and hardware specifications
• Standards (used for compliance)

• Include a requirements checklist

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 33/94

System and Software Architecture Description (SSAD)

Purpose
• Document the Architectural Analysis and the System Design
• Serves as a bridge between the Engineering (Inception and Elaboration) and Construction Phase: during the

Construction Phase, the Detailed Design is documented in the SSAD

Completion Criteria
Below are the completion criteria for the System and Software Architecture Description for the two phases:
• Life Cycle Objectives (Inception Phase)
• Life Cycle Architecture (Elaboration Phase)

Life Cycle Objectives (LCO)
• Top-level definition of at least one feasible architecture:
§ Feasibility Criterion: a system built to the architecture would support the operational concept, satisfy

the requirements, be faithful to the prototypes, and be buildable within the budgets and schedules in the
Life Cycle Plan

§ Physical and logical elements and relationships
Ø Essential features of likely components, behaviors, objects, operations, classes, …

§ Choices of COTS and reusable software elements
§ Detailed analysis, high-level Design

• Identification of infeasible architecture options

Life Cycle Architecture (LCA)
• Choice of architecture and elaboration by iteration
§ Physical and logical components, connectors, configurations, constraints
Ø Precise descriptions of components, behaviors, objects, operations, … (no more "possible" items)

§ COTS and technology reuse choices
§ Architectural style choices, deployment considerations
§ Critical algorithms, Analysis issues resolved in Design

• Architecture evolution parameters
• Complete design for each component of the system
• Tracing to and from OCD/SSRD
• Assurance of satisfaction of Feasibility Criterion

Intended audience
• Domain expert for System Analysis
• Implementers for System Design

Participants
• System Architect
• Domain Experts (to validate analysis models)
• Implementers (to validate design models)
• Project Manager (for feasibility)

High-Level Dependencies
• SSAD depends on OCD for:
§ Statement of Purpose
§ Project Goals
§ Quality Goals
§ System Responsibilities

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 34/94

• SSAD depends on SSRD for:
§ System Definition
§ System Requirements
§ Quality Attribute Requirements
§ Project Requirements

• FRD depends on SSAD to ensure that:
§ Project Requirements
§ Capability Requirements
§ Interface Requirements
§ Quality Requirements
§ Evolution Requirements
… are achievable

Overall Tool Support
• Use of Rational Rose as the visual modeling tool, where applicable, is strongly encouraged.
• Avoid large, complex UML diagrams with a lot of overlapping connections. If your diagram is hard to read,

nobody will read it, and that defeats the whole purpose of having a unified notation
• If you find that your diagrams are getting big, and overwhelmingly complex, try to reduce amount of information

shown on a diagram, and break-it up into several logically connected diagrams.
• E.g., for a class model:

• Instead of showing all attributes/operations on a large class model, show only inheritance/aggregation
• Turn off attribute/operation visibility for the overall class model
• Add for each class or set of classes, a separate diagram showing class, attributes, operations...
• Separate different class hierarchies (e.g., database Schema, HTML directories and templates, OO language

classes…)

Remark
• The SSAD should not repeat information from other documents, and should reference the other information

wherever applicable. Reviewing and referencing items in external documents is vital to project integration,
coherence and cohesion. Conciseness is paramount.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 35/94

Outline
1. Introduction

1.1 Purpose of the System and Software Architecture Description
1.2 Guidelines
1.3 References

2. Architectural Analysis
2.1 Component Model
2.2 Behavior Model
2.3 Enterprise Model

2.3.1 Logical Component Classifications
2.3.2 Logical Behavior Classifications

3. System Design
3.1 Design Views

3.1.1 Logical Component View
3.1.2 System Layered View
3.1.3 System Deployment View

3.2 Object Model
3.2.1 Design Component Specifications
3.2.2 Object Specifications

3.3 Operations Model
3.3.1 Detailed behaviors
3.3.2 Operation Specifications

3.4 Class Model
3.5 Data Model

4. System Analysis Common Definition Language
5. System Design Common Definition Language
6. Appendix

6.1 Reference
6.2 Vendor documents

1. Introduction

1.1 Purpose of the System and Software Architecture Description
• Summarize the purpose and contents of this document with respect to the particular project and people involved
• Avoid generic introductions as much as possible: for instance, you can show how your particular System and

Software Architecture Description meets the completion criteria for the given phase

Common Pitfalls:
• Simply repeating the purpose of the document from the guidelines

1.2 Guidelines
• Standards used (DOD, IEEE)
• Notation used (UML)

• New symbols used
• Stereotypes

• Naming Conventions
• Consistent use of names for elements

• e.g., anObject, the_attribute, MyClass, theOperation()
• e.g., nouns for Components, Objects, verbs for Behaviors, Operations
• e.g., label for relationships and outlets

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 36/94

1.3 References
• Provide complete citations to prior and current related work and artifacts, documents, meetings and external tools

referenced or used in the preparation of this document
• Useful for consistency checking and traceability

2. Architectural Analysis
The System Analysis is the precise description of target system independent of implementation: "what" is wanted is
more pertinent than the "how" it can be done. The deliverables are component, behavior, and enterprise models, which
are detailed representations of the proposed system from different perspectives.
Each analysis view has a counterpart in the Domain Description, which provides the initial starting point and context.
Analysis models draw basic information and elaborate in detail the aspects of the system to be built as specified by the
System Requirements.
Your main architectural task is to discover the fundamental components and behaviors of the proposed system that
arise within the Domain Description and document these in a concise way. This provides the critical high-level
architecture that will be used as a blueprint by the designers to map out a sound and faithful design for implementation
of the proposed system.

2.1 Component Model
• The component model provides the architectural breakdown of the system in terms of basic tangible parts of the

proposed system that arise from the System Responsibilities. How the components can or will be implemented, is a
design issue.

• All components should be understandable by the Domain Experts. Analysis components always have direct
relationships to Entities from Domain Description. However, the component model should not be a repetition of
the Entity Model.

• A Component is an abstraction that represents both memory and functionality within the proposed system and
maintains a non-trivial state:
• Memory: a component’s static qualities such as attributes and relationships.
• Functionality: set of behaviors that embody operations

• Important test: Components have "form" which allow them to transition from one state to another. If no state
transitions can be identified, the legitimacy as a component should be questioned.

• Objects are the smallest (most refined) kind of entity we consider in our models prior to implementation.
Components are compositions (membership relationships, such as strong aggregation) of objects with a high
degree of cohesion within the domain. Later, in design, we may need to decompose components into objects.

• Objects are used to represent the system in software. Components are used to describe the system to the domain
experts at a higher level of abstraction, independent of software. An object is a specialization of a component. It is
an atomic unit for systems analysis purposes.

• [Consistent with Entity Model (OCD 2.4)]

UML Guidelines
- Packages (Quatrani 1998, p. 51-53)
- Package Main Class Diagram (Quatrani 1998, p. 55-56)
- Package Relationships (Quatrani 1998, p. 87-88)

Detailed Guidelines
• Use the following to create a list of possible components (for the LCO). However, there should no longer be

“possible” Components by the LCA: each component should have specification templates filled out by then
• From System Responsibilities and Domain Description, look for “things” and “actors” that carry out some action.

Start with Entities from Domain Description.
• Underline nouns (not all nouns are guaranteed to be components)

• Components as Participants in Responsibilities
• “keep track of all X's” or “handle operations on Y”

• Components as Owners of Responsibilities
• All responsibilities must be eventually mapped to components

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 37/94

• Some components may be identified by looking for entities to address specific responsibilities
• Many participants will also become owners, e.g., owner of store is probably person working in the store
• Caution: May translate into large blobs. e.g., Be careful of things like “Account Manager” or “Employee

Tracker” as they may contain too many responsibilities.
• Components as Actors

• “notify users when appointments expire” must have a component doing the notification (be careful of
“schedulers” - usually a design object).

• Other Components
• Anything else that has component characteristics - (identity, memory, and operations)

• List possible components
• Start with the Entity Model (OCD 2.4)
• Look for "things"

• After listing potential components, filter them: in particular, eliminate those that in fact, represent attributes, states,
behaviors, or roles

• When in doubt, leave as a component. Easier to go from component to attribute, etc. than vice versa
• Attributes: These are the memory part of a component

• Attributes “do nothing” i.e. have no behavior e.g., Address
• States:

• “Solvent account” and “Closed account” should be combined into a single “Account” component with
states {open, closed}, {solvent, insolvent}

• Behaviors:
• Withdraw”, “Deposit”, “Access” may not be components

• Roles: occur frequently and cause lots of confusion.
• identified by how something is used by another component (always tied to relationships), as opposed to

what it actually is
• In a company payroll program, “Manager” and “Subordinate” are “Person” component in two different

roles
• One rule of thumb for filtering out design details: Ask yourself: “Is this something the domain expert will

understand?”
• Example of design details:

• File access and memory allocation
• User-Interface details
• Implementation objects (e.g. strings, pointers, etc.)

• For each possible component thought to be essential, include a Component Specification template as shown below.

Component Specification Template:
Identifier - Unique identifier used for traceability (e.g., COM-xx)
Defining quality -
Name -
Attributes - Use Attribute Specification template for non-trivial attributes (be sure to reference the Attribute

Specification is used)
a) ...
b) ...
c) ...
...

Behaviors - Use Behavior Specification template for non-trivial behaviors and/or UML Use Cases (You may
also reference behaviors in the Behavior Model to avoid redundancy)

a) ...
b) ...
c) ...
...

Relationships - Use Relationship Specification template for non-trivial relationships. Use a UML Component
(class with "component" stereotype relationship) diagram

a) ...

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 38/94

b) ...
c) ...
...

Roles - Describes how one component views another component through a relationship. Indicate roles in a
UML diagram

...

a) role name, relationship or role diagram
b) role name, relationship or role diagram
...

State Groups - You may use State transition diagrams.
a) StateGoupName1 {State11, State12, … }
b) StateGoupName2 {State21, State22, … }
...

Constraints -
Dependencies -
Candidate Key - combination of attributes uniquely identifying a component or an object
Cardinality -
Others -

Relates to - Reference corresponding Entities from the Entity Model (OCD 2.4)

UML Guidelines
- Actors (Quatrani 1998, p. 21-24)
- Use Cases (Quatrani 1998, p. 25-32)
- Use Case Relationships (Quatrani 1998, p. 32-34)
- Use Case Diagrams (Quatrani 1998, p. 34-38)
- Use Case Models (Quatrani 1998, p. 38-39)
- Modeling Dynamic Behavior (Quatrani 1998, p. 119-120)
- States (Quatrani 1998, p. 120-121)
- State Transitions (Quatrani 1998, p. 121-123)
- Special States (Quatrani 1998, p. 123-125)
- State Transition Details (Quatrani 1998, p. 125-126)
- State Details (Quatrani 1998, p. 126-128)
- Association Relationships (Quatrani 1998, p. 77-78)
- Aggregation Relationships (Quatrani 1998, p. 78-79)
- Association or Aggregation (Quatrani 1998, p. 79-80)
- Naming Relationships (Quatrani 1998, p. 80-81)
- Role Names (Quatrani 1998, p. 81-83)
- Multiplicity Indicators (Quatrani 1998, p. 83-84)
- Reflexive Relationships (Quatrani 1998, p. 85-86)
- Finding Relationships (Quatrani 1998, p. 86)
- Designing Relationships (Quatrani 1998, p. 164-171)

Advice:
• Start with a single fundamental component you know must be part of the system and fill out a specification

template for it.
• Take a component it has a relationship to, and do the same.
• Repeat this until no more components are found
• You will often need to draw upon the "possible components" list when detailing components relationships

Common Pitfalls:
• Repeating the Domain Entity Model as a Component Model
• Including Components that do not reference Entities
• Including Components that do not have counterparts as Design-Components (SSAD 3.2.1) or Objects (SSAD 3.2)
• Including “possible” Components in LCA (they are acceptable at the LCO)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 39/94

Remarks:
• Every component has to have at least one state group (even if it seems trivial with respect to the implementation):

if you are having difficulty specifying states or roles for a component, then it is probably not a component
• A component though may participate in more than one role at a given time: some roles may be assigned to multiple

components, but the relationships must be specified

For complex attributes or relationships, use the following specification templates:

Relationship Specification Template:
Identifier - Unique identifier used for traceability (e.g., REL-xx)
Defining quality -
Name -
Accessibility - {readable, settable, modifiable, fixed}
Scope - {shared, unique}
Constraints -

Required:
Initial Value:
Cardinality:
Dependencies:

Derived from:
Relational Attributes: (e.g., salary is an attribute of an employment relationship)

Others:
Role names -

RoleGroupName 1: {Role 1, ..., ...}
RoleGroupName 2: {Role 1, ..., ...}
...

Relates to - Which component from the Component Model (SSAD 2.1) participates in it?

Attribute Specification Template:
Identifier - Unique identifier used for traceability (e.g., ATR-xx)
Defining quality -
Name -
Accessibility - {readable, settable, modifiable, fixed}
Scope - {shared, unique}
Constraints -

Required:
Initial Value:
Cardinality:
Dependencies:

Derived from:
Others:

Relates to - Which component from the Component Model (SSAD 2.1) does it belong to?

UML Guidelines
- Modeling Dynamic Behavior (Quatrani 1998, p. 119-120)
- States (Quatrani 1998, p. 120-121)
- State Transitions (Quatrani 1998, p. 121-123)
- Special States (Quatrani 1998, p. 123-125)
- State Transition Details (Quatrani 1998, p. 125-126)
- State Details (Quatrani 1998, p. 126-128)
- Association Relationships (Quatrani 1998, p. 77-78)
- Aggregation Relationships (Quatrani 1998, p. 78-79)
- Association or Aggregation (Quatrani 1998, p. 79-80)
- Naming Relationships (Quatrani 1998, p. 80-81)
- Role Names (Quatrani 1998, p. 81-83)
- Multiplicity Indicators (Quatrani 1998, p. 83-84)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 40/94

- Reflexive Relationships (Quatrani 1998, p. 85-86)
- Finding Relationships (Quatrani 1998, p. 86)
- Creating Attributes (Quatrani 1998, p. 98-99)
- Designing Attributes and Operations (Quatrani 1998, p. 172-173)

2.2 Behavior Model
• Use an outline form that clearly identifies boundaries of control (i.e., the point at which a behavior requires

interaction with users or other elements outside the system)
• Start with the list of System Responsibilities (OCD 3.3)

• Refine into sub-responsibilities, and then, eventually into behaviors
• The productive questions in the additional guidelines (OCD 3.3) are useful
• Avoid system operations (i.e., behaviors that operate directly on a piece of data or supply data, such as an

Event Notification)
• Label system policies (with <policy>) and the respective algorithms (with <algorithm>), i.e., specifically

created behaviors to carry out those policies
• Label significant system events (with <event>)
• For non-trivial behaviors, provide a Behavior Specification using the Behavior Specification Template

• [Consistent with the Organization Activity Model]
• [Consistent with System Responsibilities (OCD 3.3)]
• [Consistent with Operational Scenarios (OCD 5)]

System Responsibility 1
System Sub-Responsibility 1

System Behavior 1 <event>
System Sub-Responsibility 2 <policy>

System Sub-Sub-Responsibility 1 <policy>
System Behavior 1 <algorithm>
System Behavior 2

…
System Responsibility 2

System Sub-Responsibility 1
System Behavior 1

System Sub-Responsibility 2
System Sub-Sub-Responsibility 1

System Behavior 1 <event>
System Behavior 2

…

Behavior Specification Template:
Trigger -
Preconditions -
Postconditions -
Inputs (with constraints and dependencies) -
Outputs -
Exceptions -
Use Case Diagram and/or Scenario-
Relates to - Reference corresponding System Responsibility (OCD 3.3)
Type: {<event>, <policy>, <algorithm>}

UML Guidelines
- Actors (Quatrani 1998, p. 21-24)
- Use Cases (Quatrani 1998, p. 25-32)
- Use Case Relationships (Quatrani 1998, p. 32-34)
- Use Case Diagrams (Quatrani 1998, p. 34-38)
- Use Case Models (Quatrani 1998, p. 38-39)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 41/94

- Use Case Realization (Quatrani 1998, p. 65)
- Documenting Scenarios (Quatrani 1998, p. 66)

Common Pitfalls:
• Including Behaviors that do not reference System Responsibilities, Project Goals nor Quality Goals

2.3 Enterprise Model
• The Enterprise Model is the complete model of the system domain that provides a concise overview of the overall

structure through classification, including component structures and behaviors and their taxonomies.
• In here, behaviors are mapped to the components that will carry out the operations. This is often described in terms

of class inheritance diagrams. It is often useful to classify behaviors in an inheritance diagram, as this will make
the assignment task easier. Some behaviors will not map naturally to components and software level objects will
need to be introduced later in the Design model to handle these. Typically, design objects will need to be
introduced to handle complex relationship behaviors such as roles, multi-way relationships, relational attributes,
selectors, global attributes, and enforcing non-local constraints and dependencies.

• The Enterprise model should be documented as a UML class diagram. This is essentially just labeled boxes and
arrows that indicate groupings of components (type of) and parent-child relationships (kind of) related to
generalization and specialization. Adding class variables and operations is too much detail at this point. The
inclusion of aggregate relationships (part-of) between classes may be helpful, but are not required at this point.

• The use of design patterns, such as factoring to perform component-based sub-typing usually should be considered
in design.

• The goal is to get an overall organization of the system components and system behaviors, so that choices on the
"elegance" and faithfulness of the entities can be made.

• It is natural to have several broad independent groups of components that may be "kinds-of" a more general
component. For example, "Library", "Computer Science Department", and "English Department" may all be kinds-
of "University Department" which would then be the parent of the aforementioned components. The key here is to
model what is most faithful to the domain experts view of the system. The classifications need not be complete,
nor do they all have to relate to each other (that is they do not need to have a single common root). Classifications
do not have to be limited to components or behaviors that will become object oriented software classes. Software
and technology specific classifications are not needed at this point unless they are inherently part of the system
domain (i.e. not a choice used to implement the system, but actually part of the system independent of its possible
implementation).

• Start building the model by creating a class for each component detailed (not possible components) in the
Component model.

• Group the classes by "types-of" and try to ascertain a generalization of the grouping (as in the example above,
"University Department") and create a class for the generalization and indicate that each of the members of the
grouping are "kinds-of" (or sub-types) this new class (denoted by an arrow pointing to the generalization (or
parent) in UML). A sub-type is faithful when there is an intentional distinction made and used for that class within
the system: e.g., if a component has a relationship for which two other components which are indistinguishable,
(i.e., either component is as good as a destination), then the two components should be related to a common
generalization of the two destination components (super-type). Replace the indistinguishable components in the
Component Model with the common generalization (type-of) and update the Component Model accordingly. Do
not use separate Enterprise Classes for the indistinguishable components. Example: instead of "book" and
"magazine", use "reference material". If a distinction must be made, then sub-types must be created and two
separate relationships must be used within the Component Model (e.g., if a component must specifically relate to a
magazine or a book).

• If you notice that there are missing classes that are faithful to the system, go back to the System Responsibilities
and identify which one they are involved in, or create a new System Responsibility if one can not be identified. Do
not simply add components to the Component Model, as this decreases the conceptual integrity.

• After this, the component model should be updated by adding the new component (in particular, generalizations or
super-types). However, generally, all the components detailed in the Component Model must be represented in the
Enterprise model, however there may be classes in the Enterprise model that are not detailed in the Component
Model (in particular generalizations or super-types).

• Includes classes for top level components and behaviors organized into a class tree hierarchy or diagram (if a
distinction must be made, then sub-types must be created

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 42/94

• Perform generalization, specialization, decomposition, factoring
• Classify components into Is-Kind-Of relationships and Is-Part-Of relationships

• [Consistent with Behavior Model (SSAD 2.2)]
• [Consistent with Component Model (SSAD 2.1)]
• [Consistent with System Responsibilities (OCD 3.3)]

2.3.1 Logical Component Classifications
• Classification hierarchy of components (include abstract and concrete classifications)
• Follow UML Class diagram specifications using mainly generalization and aggregation (not associations)

2.3.2 Logical Behavior Classifications
• Classification hierarchy of the behaviors in the Behavior Model (SSAD 2.2)
• Use Behavior class stereotypes and generalization (no aggregation or associations)

Common Pitfalls:
• Not including Enterprise Classes for each component specified in the Component Model: there should be at least

one Enterprise Class in the Enterprise Model for each Component
• Unfaithful sub-type, super-types (only use if they truly reflect, and are used in the system domain)
• Unfaithful introduction of "part-of" (usually aggregation) relationships
• Including non-component Enterprise classes such as attributes, states, roles, etc. in Enterprise Model
• Omitting System Components introduced in SSAD 2.1 from the Component Classification in SSAD 2.3.1
• Omitting System Behaviors introduced in SSAD 2.2 from the Behavior Classification in SSAD 2.3.2

3. System Design
• Describe how the system will be implemented in software using specific technology solutions that meet System

Requirements, Project Requirements, Quality Attribute Requirements, etc.
• In particular, in this section, you should handle:

• Non-trivial roles and states
• Bi-directional relationships
• Multi-way relationships
• Global and relational attributes
• Complex dependencies and other constraints

• You also decompose Components into software-level objects and support technologies (database, web-servers,
etc…)

• You propose direct implementation considerations, such as the use of databases, web-servers, hardware, critical
algorithms, operation sequence, significant events, GUI’s, etc.

3.1 Design Views
Three kinds used in MBASE: Logical Component View, System Layered View, and Deployment View
• What are they? Describe how system components are mapped into low-level architecture
• Why? Help identify what objects are needed by grouping components into technology representation “clusters”

discovers straightforward implementations
• Design views often help identifying “gaps” (often due to communication between components) for which

particular system objects must be created to fill (i.e., no direct relevance to domain, only makes components
“work” in software)

• System Design Views should be consistent with the System Block Diagram (SSRD 2.1)

3.1.1 Logical Component View
• The Logical Component View concerns itself with the logical software/hardware/network module organization

within the development environment, taking into account derived requirements related to ease of development,
software management, reuse, and constraints imposed by programming languages and development tools.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 43/94

• Should be consistent with system block diagrams in the System Definition (SSRD 2.1)
• Assigns components to system block diagram or other logical system group

• conceptual understanding and completeness
• ensures consistency, completeness, accessibility, and necessity of system parts and relationships to outside

(system boundaries)
• may introduce specific technology choices (some may exist from block diagram or requirements)

UML Guidelines
- The Logical View (Quatrani 1998, p. 142-145)

Common Pitfalls:
• Inconsistency with the System Block Diagram (SSRD 2.1)
• Omitting System Components introduced in the Component Model (SSAD 2.1)

3.1.2 System Layered View
The System Layered View shows the system Components organized into a hierarchy of layers, where each layer has a
well-defined interface. Some of the layers that can be found in a system:
• Reusable Frameworks or Models
• Key Mechanisms
• Hardware and Operating System Frameworks
• Object-Oriented Application Patterns (model, view, controller, association, persistence, etc.)

Assigns components to system “layers”
• Components in the same layer implicitly communicate
• Helps identify useful mechanisms and frameworks (particularly COTS DB’s, file systems, GUI’s)
• Loosely based on C2 Architectural style
• Splits system into communication areas

• It is very common that components that communicate across communication areas require new objects to
facilitate (e.g. JDBC for Java, Apache for file system to WWW browser)

• Requests travel downward. Notifications travel upward.

The System Layered View is useful for:
• Design: it allows the designer to identify the various subsystems, or inter-operating systems, especially for COTS

frameworks
• Transfer considerations, i.e., requirements and considerations for software assembling and packaging and the

approach to be used for transferring the software to the library
• Identifying representational layers, which may be handled with the existing frameworks

Additional Guidelines:
C2 Architectural style (see http://www.ics.uci.edu/pub/arch/c2.html)

UML Guidelines
- The Component View (Quatrani 1998, p. 145-152)

Common Pitfalls:
• Inconsistency with the System Block Diagram (SSRD 2.1)
• Omitting System Components introduced in the Component Model (SSAD 2.1)

3.1.3 System Deployment View
• The System Deployment View concerns itself with the physical software/hardware/network module organization
• It should be consistent with Logical Component View (SSAD 3.1.1) and the various interface and block diagrams
• Use a UML Deployment Diagram
• Assign components to deployed hardware and software

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 44/94

• if known, includes OS, mechanisms, and frameworks
• Splits system into physical groups

• very common that components that communicate across physical groups will require “glue” objects

UML Guidelines
- The Process View (Quatrani 1998, p. 152-153)
- The Deployment View (Quatrani 1998, p. 153-155)

Common Pitfalls:
• Inconsistency with the System Block Diagram (SSRD 2.1)
• Omitting System Components introduced in the Component Model (SSAD 2.1)

3.2 Object Model
• The Object Model is a refinement of the Component Model (SSAD 2.1)
• Add objects to enable components to perform their behaviors and realize their relationships within the software

system
• All components must eventually be implemented as objects or collections of objects, each of which will be an

instance of a class

Common Pitfalls:
• Including Objects that do not reference Components
• Omitting Objects Specification Templates

3.2.1 Design Component Specifications
• Add to the components from the Component Model (SSAD 2.1), new components such as Mechanisms, to make

the system realizable in software (i.e., pure software level components which do not directly map to entities in the
Domain)
• May be implementation (technology) specific
• Are never considered independently (e.g., a COTS package)
• May require "wrappers", "glue code" or "agents" during analysis to integrate into the particular application
• Design Components can consist of:

– API's
– Class And Utility Libraries
– COTS interface parameters
– COTS packages (either Application COTS, or Infrastructure COTS)
– Database tables
– Design Patterns
– File Structures
– HTML templates (dynamic generation)
– HTTP servers
– runtime environment

• Fill out the following specification template for each component that will be implemented using pre-existing
technology

Design Component Specification Template:
Identifier - Unique identifier used for traceability (e.g., DCOM-xx)
Defining Quality -
Name -
Attributes -
Assigned Behaviors -
Relationships (aggregation, association, interface, observer, etc.) -
State Groups -
Possible Roles -
Constraints -

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 45/94

Implementation (Kind Of Object) - e.g., application, server, existing subsystem, COTS package

Common Pitfalls:
• Repeating the specifications of Components as Design Components Specifications: you will NOT be designing

one or more objects for Design Components. This is why, only a Design Component Specification is needed.

UML Guidelines
- Adding Design Classes (Quatrani 1998, p. 162)

3.2.2 Object Specifications
• Specify objects to be built in the system using suggested Object Specification template.
• UML object interaction diagrams (sequence and collaboration diagrams) will be used in the Operations Model.

They are helpful in determining which operations are assigned to this object, and reference them as needed

Object Specification Template:
 Identifier - Unique identifier used for traceability (e.g., OBJ-xx)

Defining quality -
Name -
Variables - {public, private, protected}

Specify for each whether it's:
- Global (shared attribute by all instances)
- Instance (attribute specific to a particular instance)
a) ...
b) ...
c) ...

Object Interactions - Do not include UML sequence/collaboration diagrams
Operations - List operations and determine accessibility {public, private, protected}
a) ...
b) ...
c) ...
...

Outlets - interface relationships (references, pointers, etc.) to objects and components. Use UML class-
association diagrams with class instances

a) ...
b) ...
c) ...
...

States -
Use state transition diagrams
...

Constraints -
Component Membership -

Which component from the Component Model (SSAD 2.1) does it belong to?
or
Which component from the Component Model (SSAD 2.1) participates in its implementation?

Implementation - (kind of object)
e.g., Java object, API, HTML page, Database table

UML Guidelines
- Sequence Diagrams (Quatrani 1998, p. 66-70)
- Collaboration Diagrams (Quatrani 1998, p. 71-72)
- Creating Operations (Quatrani 1998, p. 94-96)
- Designing Attributes and Operations (Quatrani 1998, p. 172-173)
- Relationships and Operation Signatures (Quatrani 1998, p. 98)
- Modeling Dynamic Behavior (Quatrani 1998, p. 119-120)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 46/94

- States (Quatrani 1998, p. 120-121)
- State Transitions (Quatrani 1998, p. 121-123)
- Special States (Quatrani 1998, p. 123-125)
- State Transition Details (Quatrani 1998, p. 125-126)
- State Details (Quatrani 1998, p. 126-128)

Common Pitfalls:
• Not including the Implementation of a given object, or kind of a given object, especially during the detailed design
• Including operations in Operation Model that are not assigned to Objects in the Object Model
• Providing one or more objects for a Design Component

3.3 Operations Model
• The Operations Model is a list of behaviors, operations, tasks, events and policies, that is refined from the

Behavior Model (SSAD 2.2). Operations are specific tasks that define how a behavior is carried out within the
system. That is, behaviors are broken down into sets of operations. Operations act or "operate" directly on system
data. This differentiates operations from behaviors. Leaf behaviors are called operations when they directly act
upon some form of data.

• Iterate the Behavior Model to the point where each behavior is refined to a leaf operation, each policy has an
algorithm, and every event has associated operations (from an associated behavior)

• Augment the Behavior Model with pure design operations that are needed to carry out the behavior, but that do not
have direct counterparts in the domain. For example operations that create unique identifiers to particular objects
may be tracked, identified, and referenced.

• Use sequence diagram to detail:
– order of operations
– operations such as notifications
– assign operations to objects, keeping in mind the following principles:
§ Use existing objects and avoid introducing new objects haphazardly to handle operations
§ Minimize messages that go outside an object
• Events (<event>) imply operations are needed to respond to this event (often you will need to add operations that

perform "notification" that this particular event has occurred. Label all operations that are initiated by behavior
events with an event name

• Detail policies and associated algorithms for carrying out behaviors of type <policy>
• Algorithms (<algorithm>) imply that you will need to detail a Sequence and/or Collaboration diagram to specify

the particular algorithm
• Provide an Operation Specification Template for non-trivial operations. These often need to refer to System

Requirements Specifications

Operation Specification Template:
Identifier - Unique identifier used for traceability (e.g., OP-xx)
Initiator - An Initiator can be one of {Event, Policy, Behavior}

Event - Reference which one
Policy - Reference which one
Behavior - Reference which one

Passed parameters -
Return values -
Exception handling -
Guards -
Validation -
Messages - A message can be any of {Notification, Request, Custom}

Notifications - Reference which one
Requests - Reference which one
Custom - Reference which one

Exits -
Constraints -

Synchronization - (valid event sets, timing, concurrency, etc.)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 47/94

Relates to - Reference corresponding Behavior (SSAD 2.2) or System Requirement (SSRD 2.3)
UML Guidelines
- Sequence Diagrams (Quatrani 1998, p. 66-70)
- Collaboration Diagrams (Quatrani 1998, p. 71-72)

Common Pitfalls:
• Haphazard introduction of objects to handle operations: only create new objects as absolutely needed
• Not tying operations to System Behaviors and System Responsibilities
• Including operations that do not references Behaviors, System Requirements or Quality Attribute Requirements
• Including operations in the Operation Model that are not assigned to objects in the Object Model
• Not covering all the behaviors from the Behavior Model (SSAD 2.2)

3.4 Class Model
• The Class Model is a refinement of the Enterprise Model (SSAD 2.3)
• Objects are grouped into class hierarchies or aggregations to manage complexity
• Start with Enterprise Model (SSAD 2.3); ask which Enterprise classes will be used for implementation?

• Take all components/objects from Object Model (SSAD 3.2) and create classes for them
• Perform generalization, specialization, decomposition, factoring to create Is-Kind-Of relationships
• Label associations (aggregation relationships, etc...) to create Is-Part-Of relationships
• Create separate taxonomies for different implementation types, e.g.:

– Inheritance hierarchies for Object inheritance (abstract, concrete, leaf)
– Database schemas for database tables
– Directory/template structures for HTML pages, etc.)
– API groups
– Operation library groups
– Enterprise classes

• [Consistent with Object Model (SSAD 3.2)]
• [Consistent with Operations Model (SSAD 3.3)]
• [Consistent with Enterprise Model (SSAD 2.3)]

UML Guidelines
- What is a Class?(Quatrani 1998, p. 44-46)
- Stereotypes and Classes (Quatrani 1998, p. 46-47)
- Discovering Classes (Quatrani 1998, p. 47-51)
- Packages (Quatrani 1998, p. 51-53)
- Class Diagrams (Quatrani 1998, p. 55-59)
- Association Relationships (Quatrani 1998, p. 77-78)
- Aggregation Relationships (Quatrani 1998, p. 78-79)
- Association or Aggregation (Quatrani 1998, p. 79-80)
- Naming Relationships (Quatrani 1998, p. 80-81)
- Role Names (Quatrani 1998, p. 81-83)
- Multiplicity Indicators (Quatrani 1998, p. 83-84)
- Reflexive Relationships (Quatrani 1998, p. 85-86)
- Finding Relationships (Quatrani 1998, p. 86)
- Association Classes (Quatrani 1998, p. 102-103)
- Inheritance (Quatrani 1998, p. 107)
- Generalization (Quatrani 1998, p. 107-108)
- Specialization (Quatrani 1998, p. 108-109)
- Inheritance Trees (Quatrani 1998, p. 109-113)
- Single Inheritance versus Multiple Inheritance (Quatrani 1998, p. 113-114)
- Inheritance versus Aggregation (Quatrani 1998, p. 114)
- Splitting Classes (Quatrani 1998, p. 134)
- Eliminating Classes (Quatrani 1998, p. 135)
- Consistency Checking (Quatrani 1998, p. 135)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 48/94

- Scenario Walk-Through (Quatrani 1998, p. 136)
- Event Tracing (Quatrani 1998, p. 136)
- Designing for Inheritance (Quatrani 1998, p. 173-175)

Remark: If the design uses class libraries or frameworks, it may be also helpful to generate a class model of the
objects in the framework and identify the objects of the class libraries that are being used.
It would also be useful to indicate how the framework calls the application objects.

Common Pitfalls:
• Not including at least one Object Class in the Class Model for each Object from the Object Model
• Not separating Class taxonomies by implementation types
• Including behaviors and operations in the Class Model

3.5 Data Model
• Include as necessary to document any of the following

- Custom data structures
- Data organization
- Special Program structure
- Custom File Structures
- Global Data
- File and data cross reference
- Product-specific or implementation related issues, e.g., indexes for an Oracle database application

Common Pitfalls:
• Using this section as a “catch-all”
• Mistaking the data model for the directory structure used to store the project artifacts

4. System Analysis Common Definition Language
• Define unfamiliar terms, and acronyms encountered or introduced during System Analysis

5. System Design Common Definition Language
• Define unfamiliar terms, and acronyms encountered or introduced during System Design
• May include technology implementation terms

6. Appendix
As applicable, each appendix shall be referenced in the main body of the document where the data would normally
have been provided.

6.1 Reference
• Provide supplementary data such as algorithm descriptions, alternative procedures, tabular data, or other.

6.2 Vendor documents
• Provide information, technical specification sheets on the COTS products used
• Describe/refine domain or application independent components
– Frameworks
– Components
– Class Libraries

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 49/94

Life Cycle Plan (LCP)

Purpose
• To serve as a basis for monitoring and controlling the project’s progress
• To serve as the basis for controlling the project's progress in achieving the software product objectives.
• To help make the best use of people and resources throughout the life cycle.
• To provide evidence that the developers have thought through the major life cycle issues in advance.
• Organized to answer the most common questions about a project or activity: why, what, when, who, where, how,

how much, and whereas.

Completion Criteria
Below are the completion criteria for the Life Cycle Plan for the two phases:
• Life Cycle Objectives (Inception Phase)
• Life Cycle Architecture (Elaboration Phase)

Life Cycle Objectives (LCO)
• Identification of life-cycle stakeholders

• Users, customers, developers, maintainers, interfacers, general public, others
• Identification of life-cycle process model

• Top-level stages, increments
• Top-level WWWWWHH (Why, What, When, Who, Where, How, How Much) by stage

• Major risks identified
• Deliverables, budgets and schedules achievable by at least one system/software architecture

Life Cycle Architecture (LCA)
• Elaboration of WWWWWHH for Initial Operational Capability (IOC)

• Partial elaboration, identification of key TBDs for later increments
• All major risks resolved or covered by risk management plan
• Deliverables, budgets and schedules achievable by the architecture in the SSAD

Intended Audience
Primarily the performer teams in each stage, but also important for customers, and useful for other stakeholders.

Participants
The Project Manager for each stage leads the baselining of the plan for that stage. Plans for future stages are normally
done by a designated team member during Engineering Stage. Stakeholders affected by plan elements should
participate in their definition.

High-Level Dependencies
Products specified by Requirements and Architecture must be buildable and supportable within the budgets and
schedules in the Life Cycle Plan. Plans for transition and support must be consistent with the Operational Concept
Description.

Overall Tool Support
Use of a planning and control tool such a Microsoft Project is encouraged but not required. COCOMO II should be
used to help develop budget and schedule estimates. If COCOMO II estimates conflict with good engineering
judgement, use and document the engineering judgement.

Potential Pitfalls/Best Practices: It should be noted that through the high degree of dependencies between tasks and
people, delays in critical areas might cause schedule problems in many (if not all) activities later on. Even the simplest
reasons such as a vacation of a key person not considered may be responsible for such schedule upsets. Utmost care

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 50/94

should therefore be devoted into planning and maintaining this document, and to ensuring its feasibility via the
Feasibility Rationale.

Quality Criteria: The plan adds a time component to the other documents. Thus, there is a high degree of dependency
especially between the SSRD (and SSAD) and the life cycle plan. If the tasks identified in this document do not reflect
the requirements and the components of the product to be developed, then the plan will be useless. Thus, maintaining
the conceptual integrity between the tasks and the things they create/solve is a prime quality criterion.

Further, the timing and scheduling of the tasks is highly dependent on not only the SSAD and SSRD as explained
above, but also on the people who are working on them. Fortunately, that part is fairly independent from other
documents. However, the ultimate core of this document is the creation of a responsibility trace (or matrix) which maps
the people to components via tasks. The plan is a record of the personal and organizational commitments of each of the
stakeholders to their part of the overall project. If these commitments are vaguely defined or poorly matched to people's
capabilities, there is a high risk of project misunderstandings, frustrations and failures. The bottom-line quality criteria
are the assurance of resource level feasibility and business-case return on investment in the Feasibility Rationale.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 51/94

Outline
1. Introduction

1.1 Purpose of the Life Cycle Plan
1.2 References

2. Milestones and Products
2.1 Overall Life Cycle Strategy
2.2 Phase Milestones and Schedules

2.2.1 Engineering Stage
2.2.2 Production Stage
2.2.3 Support Stage

2.3 Phase Deliverables and Completion Criteria
3. Responsibilities

3.1 Organizational Responsibilities
3.1.1 Global Organization Charts
3.1.2 Organizational Commitment Responsibilities

3.2 Stakeholder Responsibilities
3.2.1 Engineering Stage
3.2.2 Production Stage
3.2.3 Support Stage

3.3 Development Responsibilities
3.3.1 Development Organization Charts
3.3.2 Staffing
3.3.3 Training

3.4 Client Responsibilities
4. Approach

4.1 Risk Management and Monitoring Procedures
4.2 Support Environment, Methods, and Tools
4.3 Reviews

4.3.1 Architecture Review Board I (ARB-I)
4.3.2 Architecture Review Board II (ARB-II)
4.3.3 Architecture Review Board III (ARB-III)
4.3.4 Inspections and In-Process Reviews
4.3.5 Transition Readiness Review (TRR)
4.3.6 Release Readiness Review (RRR)

4.4 Project Communications
4.5 Configuration Management
4.6 Quality Management
4.7 Facilities and Related Concerns
4.8 Status Monitoring and Control

5. Resources
5.1 Work Breakdown Structure
5.2 Budgets

6. Assumptions
7. Appendix

1. Introduction

1.1 Purpose of the Life Cycle Plan
• Summarize the purpose and contents of this document with respect to the particular project and people involved
• Avoid generic introductions as much as possible: for instance, you can show how your particular Life Cycle Plan

meets the completion criteria for the given phase

Common Pitfalls:
• Simply repeating the purpose of the document from the guidelines

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 52/94

1.2 References
• Provide complete citations to prior and current related work and artifacts, documents, meetings and external tools

referenced or used in the preparation of this document
• Useful for consistency checking and traceability

2. Milestones and Products
This section tells what project functions will be performed during life cycle, and what products will be developed. It
contains schedules and milestones which indicate when each function and product will be completed.

Integration and Dependencies with other components:
• The milestones defined for stages and phases in Section 2 must be consistent with the stage and phase

responsibilities, reviews, budgets, etc. in Sections 3, 4, and 5.
• The content of the LCO, LCA, and LCA Rebaseline milestones is exactly the content of the OCD, SSRD, SSAD,

Prototype, LCP, and FR for those milestones.

Additional guidelines:
[Boehm, 1996] provides additional information about the LCO, LCA, and IOC milestones and [Royce, 1998] about
their respective Inception, Elaboration, Construction, and Transition phases. COCOMO II may be used as a validity
check for the schedule and the milestones in Items 2.1 and 2.2.

2.1 Overall Life Cycle Strategy
Describe the overall approach to be used in defining, developing, and supporting the product:
(a) The choice of process model(s) used (waterfall, evolutionary, spiral, etc.) and the major life cycle stages, phases

and milestones. Departures from this approach can be identified in section (d);
(b) If prototyping is employed, the nature and phasing of the planned prototypes;
(c) If incremental development is employed, describe the content and phasing of the successive increments to be

developed. The phasing of the increments should correspond to the system priorities.
(d) Specifics of any other departures from the approach in item (a) (e.g., design-to-cost, design-to-schedule, multiple

parallel design or development teams, product-line as well as product development);
(e) Top-level milestone charts (Gantt charts) and activity networks (PERT charts) showing the sequence of major

products and activities.
Focus on the external products and milestones that the customer will see. Later sections should give the internal
project details.

details. Emphasize the critical process drivers and process strategies analyzed in FR 3.2.

CS 577b Guidelines:
For CS 577, the recommended process model is the WinWin Spiral Model; and the major life-cycle stages, phases, and
milestones are (See Figure 2):
• Engineering Stage (CS 577a)

− Inception Phase (Life Cycle Objectives): one WinWin Spiral cycle, completed by an LCO ARB review
− Elaboration Phase (Life Cycle Architecture): one WinWin Spiral cycle, completed by an LCA ARB review

• Production Stage (CS 577b)
− Construction Phase: a short WinWin Spiral cycle, to incorporate changes that may have occurred since the

LCA milestone, and to incorporate Product Improvement suggestions from the Individual Critiques for
CS577A, completed by an Architecture Rebaseline Review; an initial core-capability development
increment; followed by several risk-driven incremental iterations or design-to-schedule adjustments,
completed by a Transition Readiness Review

− Transition Phase, completed by a Release Readiness Review
• Support Stage (USC-ISD responsibility)

− A series of releases, each with its appropriate choice of the stages and phases above, completed by a Release
Readiness Review

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 53/94

For CS 577, the process drivers will likely include the 12-week CS577b production stage, including the need to fully
transition the product to the client, and the likely personnel discontinuity between CS 577a and CS 577b. Additional
process drivers could include client infrastructure constraints, dependencies on other projects, and challenging
performance or dependability requirements.

2.2 Phase Milestones and Schedules
Provide more detailed milestone charts and activity networks (PERT charts) identifying the activities (in each
increment, if applicable), showing initiation and completion of each activity and depicting sequential relationships and
dependencies among activities. Identify those activities that impose the greatest time restrictions on the project (i.e.,
which are on the critical path). The activities described here should be tracked with progress metrics.

Elaborate on the top-level information given in section 2.1. The following example illustrates the typical level of detail
to be provided for software integration and test activities:
• Section 2.1. For each increment, indicate completion of integration, of product test, and of acceptance test; and

indicate major dependencies on life cycle activities, on other increments, on facilities, etc.;
• Section 2.2. Indicate milestones showing the overall order in which components are integrated, and the

intermediate stages of increment and acceptance testing. Show how these are synchronized with milestones for
preparation of test drivers, facilities, equipment, data, post- processors, etc. for the various increments.

• Detailed Integration and Test Plan (not part of LCP). Indicate the integration order-of-build for all software
components. Identify each test to be performed and indicate which itemized requirement(s) it will test, and where it
fits in the overall sequence of tests.

• [Consistent with Process Match to System Priorities (FRD 3.2)]

CS 577b Guidelines
• Use actual milestone dates rather than week numbers.
• Develop phase capabilities concurrently rather than sequentially.
• Transition planning and preparation should be done to allow for an initial delivery to the customer two weeks

before the end of the semester, followed by 2 weeks of installation, hands-on training, usage testing, refinement,
and completion of IOC deliverables.

• Provide graphical activity charts: in particular, show externally provided resources and components, and highlight
the ones (e.g., equipment purchase) which are on the critical path for the transition

2.2.1 Engineering Stage

2.2.2 Production Stage

2.2.3 Support Stage
Indicate the degree of client concurrence on any client commitments expressed or implied in this section.

2.3 Phase Deliverables and Completion Criteria
For each item (plans, specifications, manuals, reports, code, data, equipment, facilities, training material, person-hours,
etc.) to be delivered to the customer, provide the following information on the nature of the deliverable item:

(a) The name or title of the item
(b) The date on which the item is due
(c) The required format of the item (disk format, tape format, document format, etc.)
(d) The completion or "exit" criteria for each item (evidence required of being produced, delivered, received, tested,

approved, etc.);
(e) Pointers to relevant contract requirements

Completion criteria are defined in [Royce, 1998] Chapter 5 and Section 9.1. The criteria will vary by phase but often
involve stakeholder concurrence, evidence of completeness and stability, actual vs. planned estimates, prototype

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 54/94

acceptability, and more. The completion criteria for each of the components of the LCO and LCA package components
are indicated in this document.

CS 577a/b Guidelines:
Deliverables for CS577a include the LCO/LCA versions of the:
§ Operational Concept Description
§ System and Software Requirements Description
§ System and Software Architecture Description
§ Life Cycle Plan
§ Feasibility Rationale
§ Prototype and optional Prototyping Results (See Appendix A)
§ COCOMO II run for the product defined in the LCO/LCA package
§ Weekly Effort Forms

Internal deliverables for CS577b include the following documents and the added transition package to be delivered to
the client:
§ LCA package (kept up-to-date with as-built architecture and design)
§ Test Plan
§ Inspection Plan
§ Quality Management Plan
§ Configuration Management Plan
§ Iteration Plans
§ Iteration Assessment Reports
§ Inspection Reports
§ Test Description and Results
§ Release Description (for each internal release)
§ Weekly Effort Forms
§ Weekly Status Reports

The transition package contents includes the software library:
§ Source Code
§ Load Modules
§ Installation Scripts

Client-side deliverables during CS577b include:
§ User Manual
§ Training Plan
§ Transition Plan
§ Support Plan
§ Training materials (including tutorials and sample data)
§ Regression Test Package
§ Tools and Procedures
§ Version Description Document (or Final Release Notes)
§ Facilities, Equipment and Data (these may not be the responsibility of the CS 577b team)

All deliverables are properly stored in the CS 577 Archive, in accordance with the course guidelines.

Figure 2 CS 577ab Process Model

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 55/94

3. Responsibilities
This Section tells who will be responsible for performing the various software life cycle functions, and where
organizationally they will be performed. It identifies the major life cycle- related agents (developer, customer,
maintainer, users and interfacers) and establishes their roles and responsibilities. It defines the major organizational
components of the project, and indicates their responsibilities across the phases of the life cycle.
It presents organization charts showing individual and organizational responsibilities, and includes plans for project
staffing and training.
• [Consistent with OCD 4.1]

Integration and Dependencies with other components:
This section of the document is relatively independent from other documents. It describes human resources, which are
needed in other sections of this document. The availability of people is the basis for scheduling and creating milestones
in Section 2 because the people identified in this section must be connected to the tasks which were identified in
Section 2. Together, the responsibilities can be defined and possible inconsistencies can be eliminated. Inconsistencies
are for example:
• no one assigned to a task
• too many assigned to a task (or it is not clear who is primarily responsible for it)
• input to a task may not be available, etc.
It is particularly important to ensure that the non-developer stakeholders (users, operators, customers, etc.) concur with
any responsibilities assigned to them in the LCP.

Preliminary
Iteration

Inception
Iteration #1

Elaboration
Iteration #2

Iteration
#3

In
iti

al
 W

in
W

in
 &

 P
ro

to
ty

pe

L
if

e
C

yc
le

 O
bj

ec
tiv

es
M

ile
st

on
e

(A
R

B
 -

I)

L
if

e
C

yc
le

 A
rc

hi
te

ct
ur

e
M

ile
st

on
e

(A
R

B
-I

I)

L
if

e
C

yc
le

 A
rc

hi
te

ct
ur

e
R

eb
as

el
in

e
M

ile
st

on
e

(A
R

B
-I

II
)

Iteration
#4

Iteration
#5

Iteration
#...

In
cr

em
en

t 1

In
cr

em
en

t .
..

In
cr

em
en

t m

Iteration
#m Transition

Iteration
#m+1

T
ra

ns
iti

on
 R

ea
di

ne
ss

 R
ev

ie
w

--
In

iti
al

 O
pe

ra
tio

na
l C

ap
ab

ili
ty

M
ile

st
on

e

CS 577 a CS 577 b USC - ISD

Iteration
#n

R
el

ea
se

 n

Engineering Production Support

R
el

ea
se

 R
ea

di
ne

ss
 R

ev
ie

w
--

Pr
od

uc
t R

el
ea

se
 M

ile
st

on
e

. . .

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 56/94

Additional guidelines:
No special tools or techniques required for the staffing part. For creating responsibilities, we recommend using MS
Project. To ensure completeness, try to look at that problem from different perspectives. For instance, look at each
person and check his or her tasks and whether they are feasible. Alternatively, look at each task and verify whether
people are assigned to it for its entire life. Further, as people shortfalls are a top candidate risk item, make sure your
people approaches in Section 3 are coordinated with the people-oriented risks in Section 4.1

3.1 Organizational Responsibilities
Identify which organizations will assume responsibility for carrying out the functions of the major life cycle- related
agents: developer, customer, maintainer, users, and interfacers. Adapt Table 2 as appropriate to indicate the life-cycle
responsibilities of each agent. Indicate the roles and responsibilities of subcontractors, vendors, team members,
independent verification and validation agents, and other external organizations. Identify any special life cycle-related
responsibilities assumed by the customer, owner, or users, e.g.
• Performance of design or development functions
• Providing facilities, equipment, or software
• Supplying data
• Performing conversion and installation functions
• Supplying support services (computer operations, data entry, transportation, security, etc.)

3.1.1 Global Organization Charts
Provide organization charts showing the responsibility relations between the various organizations involved in the
software life cycle process, and identify the key responsible personnel within each organization. The hierarchical
relationship (See Figure 3) means "A is responsible for the performance of B" (or, "if B goofs up, A is responsible for
fixing the problem")

Figure 3 Organization Chart.

Common Pitfalls:
• Mixing class hierarchies and reporting hierarchies in an Organization Chart.

3.1.2 Organizational Commitment Responsibilities
Identify by organizational position the personnel responsible for committing their organization to any changes in
project scope, budget, and schedule.

CS 577b Guidelines
This section should name individuals responsible for making project commitments for their organizations, not the
organizations.

3.2 Stakeholder Responsibilities
• Describe the following items for each stage in Sections 3.2.1, 3.2.2, and 3.2.3:
• Organization: Identify the major organizational components of the project and indicate their responsibilities during

the various stages of the life cycle. Adapt Table 2 and elaborate OCD 4.1.2 as appropriate. Provide organization
charts showing the major organizational components of the project during this stage and the key responsible
personnel within each organizational component. Record any special agreements on organizational boundaries
(e.g., the boundaries between "integration" and "system test"; the boundaries between quality assurance functions,
test functions, and management functions).

• Staffing: Identify the types of personnel required by the project (analyst, programmer, operator, clerical, etc.) and
the number of personnel of each type required to perform each major function during each life cycle phase.
Identify critical skills required of the personnel (e.g., experience with Java, image compression, Sybase). Provide

A

B

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 57/94

charts or tables showing the staffing requirements as a function of calendar time. Provide any special plans for
hiring, relocation, security clearances, organizational transfers, use of temporary personnel, special compensation,
etc.

• Training: Identify the organizations responsible for internal (project personnel) and external (customer, owner, user
personnel) training. For both internal and external training, indicate the number of personnel to be trained, the
length of training classes, the schedules for training preparation and performance, and the required facilities,
equipment, software, instructors, training materials, etc.]

Table 2 - Stakeholder responsibilities during the software life cycle

Inception Elaboration Construction Transition
Users Support definition of

requirements
specification,
operational concept
and plan. Review
prototype and
exercise if available.

Review designs and
prototypes during
ARB. Help provide
test data and test
scenarios.

Review and test
product (or its
increment) in
development
environment. Provide
test support.

Review and test
product (or its
increment) in
operational
environment. Provide
usage feedback to
Maintainer

Customer Support definition
and review of
requirements
specification,
operational concept
and plan – accept or
reject options

Monitor progress at
milestones. Review
designs, prototypes,
plans and feasibility
during ARB. Help
provide test data and
test scenarios.

Monitor progress at
milestones. Review
and test product.
Provide administrative
support. Review
system performance

Monitor progress.
Provide administrative
support in transitioning
the product. Review
system performance

Developer/
Maintainer

Prepare requirements
specification,
operational concept,
architectural
sketches and plan.
Build user interface
prototype.

Refine architecture and
design and present
them during ARB.
Refine or rebuild
further prototype to
investigate risks.
Prepare test plan.

Refine design,
implement, and
integrate product.
Perform and support
test.

Provide development
support in transitioning
the product. Adapt
product if development
environment differs
from operational one.

Interfacer Support definition of
requirements
specification and
interface
specification.

Refine interface
specification and
review design. Build
prototype to
investigate risks.

Review interface
design and
implementation.
Validate interface in
development
environment

Validate interface in
operational
environment

Common Pitfalls:
• Simply copying Table 2. You should adapt it to the particular project

3.2.1 Engineering Stage
The normal project team responsibilities for the CS 577a Engineering Stage will include four performers responsible
for the OCD and LCP, SSRD and LCP, SSAD, and Prototype, reporting to a project manager also responsible for the
FRD. Identify any differences from this approach, plus any key client roles and responsibilities during the Engineering
Stage.
User and Customer responsibilities may include meetings/discussions regarding the new system, participating in
prototyping, requirements gathering, architecture review boards, etc…

3.2.2 Production Stage
User and Customer responsibilities may include development or modification of databases; training; parallel operation
of the new and existing systems; impacts during testing of the new system; preparation for deployment in the
organization; and other activities needed to aid or monitor development.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 58/94

3.2.3 Support Stage
Operational Roles and Responsibilities can largely reference OCD 4.1.1. Ensure that maintenance roles and
responsibilities are comparably defined.

3.3 Development Responsibilities
Describe a specific organization and set of team member roles and responsibilities for the CS 577b team. Use
COCOMO II to calibrate the necessary team size. It should be detailed enough so that it could be used as a detailed
construction plan, assigning tasks and responsibilities to team members. Having a clear distribution of tasks would
make the team members work more efficiently and help them finish their tasks quicker. It is also important to minimize
the overlap between tasks assigned to different team members.

Below is an ordered list of neighboring roles and responsibilities. Cluster those roles in a way that best fits the project's
situation, by merging adjacent functions as appropriate, and adjusting to people strengths:
• Project Management; Planning and Control; Metrics analysis; Updates of LCP, FRD; Iteration Plans; Iteration

Assessment Reports
• Client Facilitation; Updates of OCD, SSRD; Transition Plan; Transition Coordination with Clients; Training and

Training Materials; User Manuals
• Quality Management; Configuration Management; Deliverables Coordination; Release Notes; Inspection Plan;

Inspection Reports; Tools coordination; Support Plan
• Test Plan; System Test; Test Reports; Review SSRD for testability; Regression Test Package
• Detailed Design; Coding; Unit Testing; Integration Testing; SSAD Updates; Maintenance Package

CS 577b Guidelines
In CS 577, the Work breakdown structure is used to address team roles and responsibilities. Teams should develop the
Work Breakdown Structure (LCP 5.1) and the Effort Estimates (LCP 5.2), before proceeding to Section 3.

3.3.1 Development Organization Charts
Describe a Development Organization Chart.

3.3.2 Staffing
Describe (as applicable):
1. The estimated staff-loading for the project (number of personnel over time). This plan will be tracked using effort

metrics.
2. The breakdown of the staff-loading numbers by responsibility (for example, management, software engineering,

software testing, software configuration management, software product evaluation, software quality assurance) and
by software development unit.

3. A breakdown of the skill levels of personnel performing each responsibility
The staffing plan should reference (as applicable) the work breakdown structure.

3.3.3 Training
Describe as applicable plans for getting the development team up to speed on critical skills.

3.4 Client Responsibilities
Elaborate the client roles and responsibilities essential to the production stage:
• equipment purchase
• facility preparation
• COTS preparation
• data conversion
• staffing
• training
• transition readiness

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 59/94

4. Approach
This Section tells how the project will implement the software life cycle strategy described in Section 2.1. It identifies
the activities, tools, and techniques, which will be employed in performing the project functions. It presents the
project's approach for risk management, and for performing software requirements analysis, design, development, test,
and implementation functions. It describes how the project will perform associated project functions such as technical
reviews, project communications, configuration management, quality management, facilities management, security,
and subcontractor management.

Integration and Dependencies with other components:
The Risk Management and Monitoring Procedures section is strongly coupled with the Project Risk Assessment section
of the Feasibility Rationale (FRD 4.0). In addition, since MBASE life cycle processes are risk-driven, the overall life
cycle strategy in Section 2.1 (incremental, design-to-schedule, etc.), will reflect the major risks. Quality Assurance is
closely coupled with the quality requirements in the SSRD. Facilities plans are coupled with the OCD. The section on
Reviews focuses on the major milestones and deliverables, and is thus coupled with Section 2. The milestone content
also creates dependencies with the capabilities and requirements described in the SSRD. Once the capabilities have
been refined in more detail, the milestone reviews will require detailed knowledge of the SSAD.

Additional guidelines:
• For Configuration Management, see [CMU-SEI, 1995] Chapter 7.6 and [Royce, 1998] Section 12.2.2.
• For Quality Assurance, see [CMU-SEI, 1995] Chapter 7.5 and [Royce, 1998] Sections 3.5 and 11.2 (assessment)

Table 3 Software Risk Management Techniques

Source of Risk Risk Management Techniques

1. Personnel shortfalls • Staffing with top talent; key personnel agreements; team-building;
training ; tailoring process to skill mix; walkthroughs.

2. Schedules, budgets, process
• Detailed, multi-source cost and schedule estimation; design to

cost; incremental development; software reuse; requirements
descoping; adding more budget and schedule; outside reviews.

3. COTS, external components • Benchmarking; inspections; reference checking; compatibility
prototyping and analysis

4. Requirements mismatch • Requirements scrubbing; prototyping; cost-benefit analysis; design
to cost; user surveys

5. User interface mismatch • Prototyping; scenarios; user characterization (functionality; style,
workload); identifying the real users

6. Architecture, performance, quality • Simulation; benchmarking; modeling; prototyping;
instrumentation; tuning

7. Requirements changes • High change threshold: information hiding; incremental
development (defer changes to later increments)

8. Legacy software • Reengineering; code analysis; interviewing; wrappers; incremental
deconstruction

9. Externally-performed tasks • Pre-award audits, award-fee contracts, competitive design or
prototyping

10. Straining computer science • Technical analysis; cost-benefit analysis; prototyping; reference
checking

4.1 Risk Management and Monitoring Procedures
Document procedures for monitoring the risk factors and for reducing the potential occurrence of each risk. Identify
contingency procedures for each area of risk. Show how the project will address, monitor, and resolve these sources of
risk, by providing plans for mitigating the identified risks. Some risk management techniques are shown in Table 3.
• Monitoring of risk management plan milestones
• Corrective Action: Decision Point to invoke Contingency Plans

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 60/94

• Top-10 Risk Item Tracking (See Table 4)
• Identify top 10 Risk Items
• Highlight these in regular project reviews (focuses review on manager-priority items)
• Focus on new entries and slow-progress items

• Risk Reassessment

Table 4: Top-N Risk Item List (Assuming weekly risk reassessment)

Weekly RankingRisk Items
Current Previous # Weeks

Risk Resolution Progress

For each critical risk item, include a detailed risk management plan in the appendix, and provide a reference to it. The
Risk Management Plan answers the following questions:
1. Objectives (Why?): Risk item importance, relation to project objectives
2. Deliverables and Milestones (What? When?): Risk resolution deliverables, milestones, activity nets
3. Responsibilities and Organization (Who? Where?):
4. Approach (How?): Prototypes, surveys, models, …
5. Resources (How Much?): Budget, schedule, key personnel, …

CS 577b Guidelines:
A risk management technique commonly used in CS 577b is a weekly top-10 Risk Items Lists

4.2 Support Environment, Methods, and Tools
Describe the key environment, methods, and tools choices for CS 577b: Use the Software Tools Coverage by activity
chart (Figure 4) as checklist. Refer to [Royce, 1998] Chapter 12 for more information.

4.3 Reviews
This Section identifies the major project reviews and their objectives. It provides the plans to prepare for, conduct, and
follow up on the review meeting in order to achieve the objectives of each review.

The primary objective of each major review is to determine whether or not the project is ready to proceed to the next
life cycle phase. If so, the phase products reviewed are baselined and put under configuration management, to provide
a stable foundation for the following phase. Note that the LCO package is not baselined, since the high priority is to
evolve it into an LCA version.

Preparing the Reviews section often requires a good deal of tailoring. Each project review is actually a small project in
itself, and should thus have its own small project plan, indicating its objectives, milestones, responsibilities, approach,
resources, and assumptions.

In practice, though, particularly on small projects, there may be a good deal of overlap between these sections (e.g.,
between "milestones" and "approach"), and between the plans for the various reviews. In such cases, it is best to
compress Section 4.3 into a single generic plan, accompanied by a table indicating the unique characteristics of each
review.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 61/94

Figure 4 Software Tools Coverage by Activity

Review plans should emphasize the following pre-meeting activities:
• getting user, owner, and interfacer organizations to participate;
• securing commitments from capable reviewers;
• preparing review assignments;
• distributing review material well in advance;
• getting itemized written comments from reviewers;
• providing the comments to the developer, and getting the developer to prepare his or her response;
• setting up the review meeting agenda;
and the following post-meeting activities:
• publishing review meeting minutes, documenting agreements reached at the meeting;
• assigning, tracking, and closing out action items from the review meeting;

The review materials should include not only the phase products, but also evidence of the developer's having verified
and validated them (e.g., the Feasibility Rationale in the LCO and LCA packages).

Subsections of Section 4.3 are indicated below for the reviews corresponding to the nominal phase organization in
Table 5. These subsections should be modified to reflect any significant departures of the project's development
strategy from this nominal approach.

General principles for ARB reviews are available in [AT&T, 1993]. CS577 ARB reviews need to put review materials
on the Web a week in advance, and to arrange a satisfactory review time for their clients. Reviews involve short
highlight presentations by each team member, including a prototype demo. A review scribe should summarize the
review results, with associated actions, agents, and due dates.

Plans
& Requirements Product Design Programming Test Implementation

& Modification
System Engr.,
 Rqts. Tools

Structured Analysis & Design

Test Data Generator
& Test Case Analyzer

Debugging Aids

Simulation
Object Oriented Analysis & Design

Scenarios
Prototyping (Visual GUI Tools)

Use Cases
Model-Based Development

Model Consistency and V&V Aids
Test Case Matrices

Programming Construction Workbenches
Quality Assurance Aids

Performance Analyzers
Requirement to Design
 Transformation Aids

Design to Code
Transformation Aids

Software Development Files

Design & Code Inspection Aids
Automatic Document Generation

Requirement & Design Consistency Tracking Tools
Reengineering & Reverse Engineering Aids

Parallel & concurrent Development (Cross-Platform, Team Support)
4GL Development Tools

Conversion Aids

Component-Based Development
Object-Oriented Application Development

Project Management (Scheduling & Budgeting)
Configuration Management (Version & change Control)

Integrated Project Database (Repository, Library, Dictionary, etc.)
Extended OS Facilities (E-Mail, FTP, Graphics, etc)

Office Automation
Collaboration Support

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 62/94

CS 577b Guidelines
• You may reference plans and reports which will be done in CS 577B

• Review Plan
• Inspection Plan
• Inspection Reports

• Review plan should indicate how client wants to accomplish the reviews (one vs. more meetings; demos; training
sessions, etc.) and identify candidate dates for each

• Refer to the inspection guidelines on the CS 577b web site, and their associated inspection reports. See also
[CMU-SEI, 1995], Chapter 8.7.

4.3.1 Architecture Review Board I (ARB-I)
• The Review Criteria for the LCO Architecture Review are the completion criteria for LCO Feasibility Rationale.

4.3.2 Architecture Review Board II (ARB-II)
• The Review Criteria for the LCA Architecture Review are the completion criteria for LCA Feasibility Rationale.

4.3.3 Architecture Review Board III (ARB-III)
• The LCA Rebaseline Review is an incremental review of the LCA package with respect to its Feasibility

Rationale Criteria

4.3.4 Inspections and In-Process Reviews
• Detailed Design Inspection
• Code Inspection
• User Manual Inspection
• Unit Test Completion Reviews (UTCR)

4.3.5 Transition Readiness Review (TRR)
• The Transition Readiness Review (TRR) should verify that the following transition pre-conditions are satisfied:

• Ready-to-install software, verified for compliance with the requirements in the SSRD;
• Ready-to-use User's Manual, Maintenance Manual, training material, installation and operational procedures;
• Draft Version Description Document;
• Ready-to-use client facilities, equipment, software infrastructure, and applications data;
• Committed client personnel for transition and training
• A Transition Plan (a mini WWWWWHH (Why, What, When, Who, Where, How, How Much) plan) for the

transition activities, including completion criteria for the Release Readiness Review (RRR).

The Transition Plan may identify transition preconditions whose satisfaction is deferred for the Release Readiness
Review (e.g., final tailoring of user interfaces and operational procedures). The completion criteria for the Release
Readiness Review (RRR) will include the completion criteria for the deliverables in Section 2.3, plus any situation-
specific criteria (e.g., the degree of cutover from the existing operation to be accomplished by the Release Readiness
Review).

4.3.6 Release Readiness Review (RRR)
• The Release Readiness Review (RRR) should verify the successful completion of the Transition Plan and the

Readiness of the system and the clients to transition into client operations. The Release Readiness Review (RRR)
should review all operations-critical items, such as:
• system preparation;
• training;
• usage;
• evolution support with clients.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 63/94

• It should reference section 2.3 for “acceptability” criteria for deliverables
• Review plan should indicate how client wants to accomplish the final review to assure satisfactory system

transition and identify candidate dates for each

Table 5 Key products and the reviews (not including In-process Reviews and Inspections)

Phases: Inception
(LCO)

Elaboration
(LCA)

Construction Transition Support

Reviews: ARB-I ARB-II ARB-III Iteration Iteration ... TRR RRR …
Requirements, Design and Management Set
Operational Concept Description (OCD) s s s s s s
System and Software Requirements Definition (SSRD) s s s s s s
System and Software Architecture Description (SSAD) s s s s s s
Life Cycle Plan (LCP) s s s s s s
Feasibility Rationale (FRD) s s s s s s
Prototype s s s
Status Assessment s s s s s s s s

Construction Set
Detailed Construction Plan (Refined LCP) s
Quality Management Plan s
Configuration Management Plan s
Inspection Plan s
Test Plan s
Working Set
Iteration Plans s s
Inspection Reports s s
Test Reports s s
Release Notes s s
Iteration Assessment Reports s s
Implementation Set
Source Code Baselines s s s s
Associated Compile-Time Files s s s s
Component Executables s s s s
Deployment Set
Transition Plan s s
Training Plan s s
User Manual s s
Support Plan s s

Note: this table is adapted from [Royce, 1998] Figure 6-10. The dark triangles are controlled (strong) baselines whereas the light triangles are
informal (weaker, less defined) baselines.

4.4 Project Communications
Provide a plan for how team members will communicate with each other and the client(s) covering:
• Meeting schedules
• Use of email, web, etc.
• Conference calls, etc.
• Use of word processing systems for document integration

4.5 Configuration Management
The objective of Configuration Management (CM) is to provide a stable foundation for software life cycle by
establishing baseline versions of key products, and maintaining them under a formal change control process. To
achieve this objective, CM involves five major functions:
(1) Configuration Identification: Identify the key products to be baselined and the project milestones at which they

enter the CM process. These would correspond to the various phase deliverables in Section 2.3.
(2) Change Control: Provide a flow chart indicating the sequence of tasks and decisions involved in submitting,

analyzing, approving, and implementing proposed changes to software baseline items. Provide the associated
change control forms and procedures, and a chart indicating what level of management is responsible for
approving the various classes of proposed changes.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 64/94

(3) Configuration Status Accounting: Identify the purpose, content, and format of the various status accounting
records and reports, and the procedures for operating the status accounting system.

(4) Configuration Audits: Identify the responsibilities, schedules, and procedures involved in performing audits of the
integrity of the CM baselines and records.

(5) Project Library Management: Describe the operation of the project library, including:
(a) organizational responsibilities;
(b) library contents;
(c) services provided;
(d) operational procedures for general usage, storage and release of master copies, security, backup and recovery;
(e) library facilities and support services;
(f) staffing and resource requirements

CS 577b Guidelines:
For CS 577ab, it will be sufficient to identify for the CS 577b project:
• Which items will be baselined when (e.g., LCA package rebaselined at ARB-III)
• How changes to the baseline will be coordinated with the client (e.g., meeting for major changes, email for

moderate changes, none for trivial changes)
• How outstanding problem reports will be tracked
• Who will be the custodian of the master baselined versions, and how he/she will preserve the integrity and

recoverability of the master versions

4.6 Quality Management
The objective of software quality management is to ensure the delivery of a high-quality software product by
determining the project’s prioritized quality objectives and verifying that the project's agreed-upon plans, policies,
standards, and procedures for achieving those objectives are all adhered to.
This section should elaborate on quality attributes, and roles & responsibilities of team members in achieving them. As
emphasized in [Royce, 1998], Appendix 5, quality is everyone's responsibility, but it is still generally useful to include
traditional quality assurance functions such as:
a) Development of documentation and code standards;
b) Verification of the project's compliance with its documentation and code standards;
c) Auditing the project's compliance with its plans, policies, and procedures;
d) Monitoring the performance of reviews and tests;
e) Monitoring corrective actions taken to eliminate reported QA deficiencies

CS 577b Guidelines:
For CS 577ab, it will be sufficient for the CS 577b project to identify a specific CS 577b team member to perform the
QA function. Following the Theory W principle (“Match people’s tasks to their win conditions"), it would be best to
have the QA function (and probably related functions such as configuration management) performed by the team
member responsible for successful product transition to the client.

Common Pitfalls:
Do not promise more than you want to deliver. Identify just the key subset of standards the CS 577b team should
follow and compliance-manage (e.g., header block information for code modules; document formats; avoidance of
error-prone code constructs, CGI, exotic OS features limiting portability, etc.).

4.7 Facilities and Related Concerns
Identify, as appropriate, the functions, milestones, responsibilities, physical configurations and operational procedures
involved in preparing and operating project facilities, and in handling related concerns, including:
• Support services
• Support software
• Customer furnished facilities, equipment, and services
• Security
• Subcontractor operations
• Use of commercial software

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 65/94

Facilities may include:
• computer rooms, flooring, power supply, and air conditioning
• computers, peripherals, and supplies
• data communications capabilities
• office space, furniture, equipment, utilities, and supplies
• transportation, parking, and employee services

CS 577b Guidelines:
Identify library-furnished equipment, software, services, documentation, data, and facilities. A schedule detailing when
these items will be needed shall also be included. Also, include other required resources, including a plan for obtaining
the resources, dates needed, and availability of each resource item.

4.8 Status Monitoring and Control
Describe the techniques, procedures, and reports to be used in tracking project progress vs. plans and expenditures vs.
budgets. Include, as appropriate:
• Risk Monitoring Procedures
• Summary Task Planning Sheets
• Earned Value Status Reports
• Project Expenditure Summaries
• Cumulative Milestone Progress Reports
• PERT/ COST Systems
• Budget-Schedule-Milestone Charts
• Personnel Loading Charts
• Detailed Expenditure vs. Budget Reports

CS 577b Guidelines:
Most of the items above would be overkill for CS 577b. It will generally be sufficient to identify how milestones will
be tracked (e.g., via text schedules, Microsoft Project, etc.), and who is responsible for monitoring and controlling what
(e.g., project manager for major milestone completion, QA person for inspections and product content).

Describe the software metrics used for tracking and controlling the project development, and the process used to collect
and analyze the metrics. Each team must report weekly progress, effort and trouble report metrics as well as risk items,
using Weekly Effort Forms submitted by the team members. Describe all the different sets of progress metrics that will
be tracked. Examples include major development milestones, lines of code, etc. Progress metrics can also be broken
down by function or sub-teams. Optional metrics include requirements volatility.

5. Resources
This Section tells resources (how much) the project will require to perform the functions indicated in the previous
sections. It identifies the resources by type (personnel, calendar time, capital dollars, operations dollars, etc.), by
expenditure category (labor, computer, travel, publications, etc.), by life cycle phase, and by project activity.

Integration and Dependencies with other components:
The tasks must fit into the required capabilities as described in the SSRD and SSAD, which are summarized in Item
5.1. Based on that summary, the budget can be estimated and refined. The resource requirements are the levels of
investment needed for the business case in the Feasibility Rationale.

Additional guidelines:
Use COCOMO II for the cost estimation. See [Royce, 1998] Section 10.1 for WBS guidelines.

5.1 Work Breakdown Structure
The WBS provides a hierarchical ordering of project tasks and activities which serves as a basis for project budgeting,
cost collection, and control.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 66/94

Provide a WBS chart indicating the project's WBS elements, their associated budgets, and the person responsible for
the tasks and budgets. Form the WBS by an appropriate tailoring of the project-specific WBS product.

CS 577b guidelines
The WBS in [Royce, 1998] Section 10.1 is good for big projects but an overkill for CS 577b. For CS 577b, it is
generally sufficient to construct a WBS similar to the project organization chart in 3.2.2, identifying the number of full-
student-time-equivalent people doing which functions (e.g., 2.0 for two team members devoted to programming, down
to identifying each programmer's software components), plus any WBS elements for equipment costs, data preparation
costs, etc.

5.2 Budgets
Provide breakdowns of the software life cycle project budget and staffing level requirements. These should include, as
appropriate, breakdowns by:
• WBS element;
• Phase and by calendar month;
• Labor grade (analyst, programmer, operator, clerical, etc.);
• Budget category (capital dollars, operations dollars, etc.);
• Expenditure category (labor, computer, travel, publications, miscellaneous).

A checklist of potential miscellaneous expenditures is given in Table 6.

Include Effort and Schedule estimates using at least two different, credible, and repeatable cost estimation techniques.
• Object points (You should have more or less a fair idea on the number of screens, reports, and 3GL components in

your application, especially after doing your prototype, SSRD, and SSAD)
• SLOC
• Function Points (backfiring tables can convert function-points to SLOC)
It is critical to document any assumptions used to come up with the estimate: e.g., when using COCOMO, ratings for
the Effort Multipliers, Scale factors, etc… The Effort (Person-months) and Schedule should be used to validate the
staffing requirements and confirm that the project is feasible within the allotted budgets and schedule (FRD 3.3).

Table 6: Miscellaneous Software Project Expenditure Sources

Clerical Costs
Related Personnel Costs Overtime, benefits, hiring, termination, relocation, education; personnel costs for

product acquisition: contracts, legal, receiving, inspection, etc.
Related Computer Costs Installation, maintenance, insurance, special equipment: terminals, control units, data

entry devices, etc.
Office Equipment Costs Computers, telephones, copiers, file cabinets, desks, chairs, software, etc.
Software Product Costs Purchase, rental, licensing, maintenance of software components, utilities, tools, etc.
Supplies Costs Disks, forms, paper, print cartridges, office supplies, etc.
Telecommunication Costs Line charges, connection charges, special equipment: modems, video conferencing, etc.
Facility Costs Office Rental, electricity, air conditioning, heating, water, taxes, depreciation, cleaning,

repairs, insurance, security, fire protection, etc.
Other costs Travel, postage, printing, consulting fees, books, periodicals, conventions, equipment

relocation, etc.

CS 577b guidelines
The budget breakdowns in the guidelines are more for big projects than for CS 577b. For CS 577b, provide a manual
COCOMO II Object-Points analysis, and a USC COCOMO II SLOC-based estimate, and provide breakdowns by item
of the overall equipment, data preparation and other costs identified in the WBS in Section 5.1.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 67/94

6. Assumptions
This Section identifies the conditions which must be maintained in order to implement the plans above within the
resources specified. If one or more of these assumptions is no longer satisfied, then the requirements (System
Requirements or Project Requirements) may need to re-negotiated; or the Life Cycle Plan may need to be re-evaluated

Develop a list of assumptions on which the project planning decisions are based so that they are understood by
everyone on the project. It is important to uncover unconscious assumptions and state all assumptions up front. Assess
and state the likelihood that the assumption is correct, and where relevant, a list of alternatives if something that is
assumed does not happen.

These assumptions might cover such items as:
• Stability of software product requirements, including external interfaces;
• Stability of required development schedules;
• Continuity of funding;
• On-schedule provision of customer-furnished facilities, equipment, and services;
• On-schedule, definitive customer response to review issues and proposed changes.
• What the developers expect to be ready in time for them to use. For example, other parts of your products, the

completion of other projects, software tools, software components, etc.
• Dependencies on computer systems or people external to this project
• Any tasks which are on the critical path of the project
• [Consistent with Process Match to System Priorities (FRD 3.2)]
• [Consistent with Project Requirements (SSAD 2.2)]

Integration and Dependencies with other components:
Assumptions are made because the necessary detail is not yet known. Thus, this section will change as the system
evolves. The assumptions can be based on any aspect of the development and thus they can be dependent on any
document (e.g. SSRD and SSAD). The risk identification and analysis part in section 4 should reflect those
assumptions.

7. Appendix
The Appendix may be used to provide additional information published separately. As applicable, each appendix shall
be referenced in the main body of the document where the data would normally have been provided. As applicable,
each appendix shall be referenced in the main body of the document where the data would normally have been
provided.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 68/94

Feasibility Rationale Description (FRD)

Purpose
• Ensure feasibility and consistency of other package components (OCD, SSRD, SSAD, LCP, Prototype)
• Demonstrate viable business case for the system
• Identify shortfalls in ensuring feasibility, consistency, and business case as project risk items for LCP
• Demonstrate that a system built using the specified architecture (described in the SSAD) and life cycle process

(described in the LCP) will:
• satisfy the requirements described in the SSRD
• support the operational concept described in the OCD
• satisfy the success-critical stakeholders in the OCD and LCP
• remain faithful to the key features determined by the prototype described in the OCD and SSRD
• stay within the budgets and schedules in the LCP

• Rationalize life cycle decisions in a way the prime audience (the customer and users) and other stakeholders can
understand

• Enable the customers to participate in the decision process and to express their satisfaction with the product

Completion Criteria
Below are the completion criteria for the Feasibility Rationale Description for the two phases:
• Life Cycle Objectives (Inception Phase)
• Life Cycle Architecture (Elaboration Phase)

Life Cycle Objectives (LCO)
• Assurance of consistency among elements above for at least one feasible architecture
§ Via analysis, measurement, prototyping, simulation, etc.
§ Business case analysis for requirements, feasible architectures

Life Cycle Architecture (LCA)
• Assurance of consistency among elements above for the architecture specified in the SSAD
• All major risks resolved or covered by risk management plan

Intended Audience
• The primary audiences are the LCO and LCA Architecture Review Board members
§ Key system stakeholders
§ Experienced peers
§ Technical Specialists in critical areas

• The parts dealing with client satisfaction must be understandable by the client representatives on the ARB.
• The technical parts must be sufficiently detailed and well organized to enable the peers and technical experts to

efficiently assess the adequacy of the technical rationale.
• The FRD is of considerable value to developers and other stakeholders in providing a rationale for important

decisions made by the project.
Participants
• Project manager responsible for content
• OCD author should prepare business case
• All stakeholders responsible for consistency and feasibility via Win-Win negotiations
• Agreements can be contingent on demonstration of feasibility

High Level Dependencies
The thoroughness of the Feasibility Rationale is dependent on the thoroughness of all the other LCO and LCA
components. Issues incompletely covered in the Feasibility Rationale are sources of risk, whose management should be
covered in the Life Cycle Plan’s (LCP) Risk Management and Monitoring Procedures section (LCP 4.1)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 69/94

Overall Tool Support
Well-calibrated estimation models for cost, schedule, performance, or reliability are good sources of feasibility
rationale. Others are prototypes, simulations, benchmarks, architecture analysis tools, and traceability tools. The
rationale capture capability in the WinWin tool is also useful.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 70/94

Outline
1. Introduction

1.1 Purpose of the Feasibility Rationale
1.2 References

2. Product Rationale
2.1 Business Case Analysis

2.1.1 Development Cost Analysis
2.1.2 Implementation Cost Estimate
2.1.3 Operational Cost Estimate
2.1.4 Maintenance Cost Estimate
2.1.5 Estimate of Value Added and Relation to Cost

2.2 Requirements Satisfaction
2.2.1 Capability Requirements Satisfaction
2.2.2 Interface Requirements Satisfaction
2.2.3 Quality Requirements Satisfaction
2.2.4 Evolution Requirements Satisfaction

2.3 Operational Concept Satisfaction
2.4 Stakeholder Concurrence

3. Process Rationale
3.1 System Priorities
3.2 Process Match to System Priorities
3.3 Consistency of Priorities, Process and Resources

4. Project Risk Assessment
5. Analysis Results

5.1 Commercial-Off-The-Shelf Solutions
5.2 Components

6. Appendix

1. Introduction

1.1 Purpose of the Feasibility Rationale Description
• Summarize the purpose and contents of this document with respect to the particular project and people involved
• Avoid generic introductions as much as possible: for instance, you can show how your particular Feasibility

Rationale Description meets the completion criteria for the given phase

Common Pitfalls:
• Simply repeating the purpose of the document from the guidelines

1.2 References
Provide complete citations to all documents, meetings and external tools referenced or used in the preparation of this
document.

2. Product Rationale
This section furnishes the rationale for the product being able to satisfy the system specifications and stakeholders (e.g.
customer, user). It should also provide the rationale as to why the proposed system is better than the current system.

Integration and Dependencies with other components:
This section is highly dependent on all other documents. The cost estimates in Item 2.1 are strongly dependent on
development cost (from LCP) and operational cost (from OCD). Item 2.2 maps requirements to design, which create a
high dependency between the System and Software Requirements Description (SSRD), the System and Software
Architecture Description (SSAD), and often the prototype. Similarly, item 2.3s create a dependency between the OCD,
the SSAD, and often the prototype. The stakeholder concurrence in Item 2.4 summarizes the findings so that green light
can be given to proceed with the development.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 71/94

Additional guidelines:
Architecture attribute analysis methods can be used to assess feasibility of quality attribute requirement levels (See
Table 7). The rationale capture capability in the WinWin tool is also useful.

Table 7 Top-Level Field Guide to Software Architecture Attribute Analysis Methods

Method Examples Strengths Potential Concerns

Interface
Checking

StP, RDD-100 • Static integrity (partial)
• Traceability

• Dynamic integrity
• Performance, cost, schedule analysis
• Subjective attributes

Formalized
Models

Rapide, Wright,
HDM, AAA

• Static, dynamic integrity
• Security
• Interoperability

• Model granularity and scalability
• Cost, schedule, reliability, full

performance
• Subjective attributes

Scenario
Analysis SAAM

• Subjective attributes
- Usability, modifiability

• Human-machine system
attributes:
- Safety, security, survivability

• Largely manual, expertise-dependent
• Scenario representativeness; method

scalability
• Verification/Validation/Accreditation
• Integrity, performance, cost, schedule

analysis

Simulation;
Execution

Network VOA;
UNAS

• Performance analysis
• Dynamic integrity
• Reliability, survivability, accuracy

• Model granularity and scalability
• Input scenario representativeness
• Verification/Validation/Accreditation
• Cost, schedule, subjective attributes

Parametric
Modeling

A4, COCOMO,
Queuing Models

• Cost, schedule analysis
• Reliability, availability analysis
• Performance analysis

• Subjective attributes
• Static, dynamic integrity
• Verification/Validation/Accreditation
• Input validation

2.1 Business Case Analysis
This section describes the impact of the product in mainly monetary terms.
• How much does it cost to develop and to operate?
• How much added value does it generate?
• How high is its return on investment?
However, non-monetary factors may be also decisive. For instance, “added value” can include the improved quality of
the service provided by the product.
• For a commercial system, the business case analysis will generally demonstrate an acceptable financial return on

investment.
• For a research and education support system, the rationale would be expressed in terms of improvements in

research and educational effectiveness as expressed by the users, or in terms of cost savings to achieve the desired
level of effectiveness

2.1.1 Development Cost Analysis
• Using estimates computed in the section Budgets (LCP 5.2), provide a summary of the full development cost,

including hardware, software, people, and facilities costs.

Common Pitfalls:
• Repeating the analysis from LCP 5.2. Provide only a summary, and reference the detailed analysis

2.1.2 Transition Cost Estimate
• Provide a rough estimate of costs to be incurred during the transition of the product into production
• These costs may include:

• Training Time

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 72/94

• Data preparation
• COTS licenses
• Operational readiness testing
• Site preparation

• Facilities preparation
• Equipment purchase

2.1.3 Operational Cost Estimate
• Provide a summary of the operational costs, including costs for the operational and additional support software

2.1.4 Maintenance Cost Estimate
• Provide a summary of maintenance costs if applicable
• Use COCOMO Maintenance data (optional)

Common Pitfalls:
• Repeating the analysis from LCP 5.2. Provide only a summary, and reference the detailed analysis

2.1.5 Estimate of Value Added and Relation to Cost
• Provide a summary of cost with and without the product, and how much value it adds
• The value added may also describe non-monetary improvements (e.g. quality, response time, etc.) which can be

critical in customer support and satisfaction.
• Include a Return-On-Investment (ROI) analysis as appropriate.

2.2 Requirements Satisfaction
• This section summarizes how well a system developed to the product architecture will satisfy the system

requirements.

Additional Guidelines
Provide a Requirements Satisfaction Traceability Matrix as shown below, which indicates which part(s) of the SSAD
guarantee satisfaction of the particular requirement, with annotations where necessary. You may also want to indicate
whether the requirement is partially or completely satisfied.

Requirement Identifier Requirement Satisfaction Architecture Elements Comments
[RQ-xx] P: Partial

C: Complete
[COM-xx], [OBJ-xx],
[OP-xx], …

Common Pitfalls:
• Simply restating the requirements, without showing how and why the proposed architecture guarantees that they

will be met

2.2.1 Capability Requirements Satisfaction
• Show evidence that the system developed to the product architecture will satisfy the capability requirements, e.g.,

“capability described/demonstrated/exercised as part of included COTS component”, with a pointer to the results.
• No need to restate obvious mappings from the requirements to the architecture.
• For each critical requirement, indicate:

• Criticality: Describe how essential this requirement is to the overall system
• Cost and schedule: Describe the relative or absolute costs associated with the technical issues associated with

satisfying that particular requirement

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 73/94

• Side effects: Interactions with other requirements
• Dependencies: Dependencies on COTS package capabilities, externally furnished components, etc.
• Risks: Describes the circumstances under which this requirement might not able to be satisfied, and what

actions can be taken to reduce the probability of this occurrence.
• [Consistent with System Requirements (SSRD 2.3)]

2.2.2 Interface Requirements Satisfaction
• Show evidence that the system developed to the product architecture will satisfy the critical interface

requirements.
• [Consistent with System Interface Requirements (SSRD 3.0)]
• [Consistent with Environment and Data Requirements (SSRD 4.0)]

Table 8 Quality Attribute Strategies and Relations: Architecture Strategies

Primary
Attribute

Architecture
Strategy

Other Attribute
Reinforcement

Other Attribute
Conflicts

Special Cases,
Comments

Input acceptability
checking

Interoperability,
Usability

Development Cost/
schedule, Performance

Redundancy Development Cost/
schedule, Evolvability,
Performance, Usability

Backup/recovery Development Cost/
schedule, Evolvability,
Performance

Dependability

Monitoring & Control Development Cost/
schedule, Performance

Performance
reinforcement in
long term via
tuning

Input acceptability
checking

Dependability,
Usability

Development Cost/
schedule, Performance

Interoperability

Layering Evolvability/
Portability,
Reusability

Development Cost/
schedule, Performance

Error-reducing user
input/output

Dependability Development Cost/
schedule, Performance

Usability

Input acceptability
checking

Dependability,
Interoperability

Development Cost/
schedule, Performance

Architecture balance Cost/SchedulePerformance
Domain architecture-
driven

Cost/Schedule

Evolvability/
Portability

Layering Interoperability,
Reusability

Development Cost/
schedule, Performance

Architecture balance PerformanceCost/Schedule
Domain architecture-
driven

Performance

Domain architecture-
driven

Interoperability,
Reusability

Development Cost/
schedule, Performance

Reusability

Layering Interoperability,
Evolvability/
Portability

Development Cost/
schedule, Performance

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 74/94

2.2.3 Quality Attribute Requirements Satisfaction
• Show evidence that the system developed to the product architecture will satisfy the critical quality requirements.
• Table 7 summarizes the most effective analysis methods available for each quality attribute
• Table 8 and Table 9 show some effective architecture, product and process strategies for ensuring Quality Attribute

Requirements Satisfaction
• [Consistent with Quality Attribute Requirements (SSRD 3)]

Table 9: Quality Attribute Product and Process Strategies

Product Strategies Process Strategies

Dependability Accuracy Optimization, Backup/
Recovery, Diagnostics, Error-reducing
User Input/output, Fault-tolerance
Functions, Input Acceptability Checking,
Integrity Functions, Intrusion Detection &
Handling, Layering, Modularity,
Monitoring & Control, Redundancy

Failure Modes & Effects Analysis, Fault
Tree Analysis, Formal Specification &
Verification, Inspections, Penetration,
Regression Test, Requirements/Design V
& V, Stress Testing, Test Plans & Tools

Interoperability Generality, Integrity Functions, Interface
Specification, Layering, Modularity, Self-
containedness

Interface Change Control, Interface
Definition Tools, Interoperator
Involvement, Specification Verification

Usability Error-reducing User Input/output, Help/
explanation, Modularity, Navigation,
Parametrization, UI Consistency, UI
Flexibility, Undo, User-programmability,
User-tailoring

Prototyping, Usage Monitoring &
Analysis, User Engineering, User
Interface Tools, User Involvement

Performance Descoping, Domain Architecture-driven,
Optimization (Code/ Algorithm),
Platform-feature Exploitation

Benchmarking, Modeling, Performance
Analysis, Prototyping, Simulation,
Tuning, User Involvement

Adaptability
(Evolvability /
Portability)

Generality, Input Assertion/type
Checking, Layering, Modularity,
Parameterization, Self-containedness,
Understandability, User-programmability,
User-tailorability, Verifiability

Benchmarking, Maintainers & User
Involvement, Portability Vector
Specification, Prototyping, Requirement
Growth Vector Specification &
Verification

Development Cost
/ Schedule

Descoping, Domain Architecture-driven,
Modularity, Reuse

Design To Cost/schedule, Early Error
Elimination Tools And Techniques,
Personnel/Management, Process
Automation, Reuse-oriented Processes,
User & Customer Involvement

Reusability Domain Architecture-driven, Portability
Functions

Domain Architecting, Reuser
Involvement, Reuse Vector Specification
& Verification

All of Above Descoping, Domain Architecture-driven,
Reuse (For Attributes Possessed By
Reusable Assets)

Analysis, Continuous Process
Improvement, Incentivization,
Inspections, Personnel/Management
Focus, Planning Focus, Requirement/
design V&V, Review Emphases, Tool
Focus, Total Quality Management

2.2.4 Evolution Requirements Satisfaction
• Show evidence that the system developed to the product architecture will satisfy the critical evolution

requirements (e.g., show which parts of the architecture ensure an easy transition to support via the IBM Digital
Library package).

• [Consistent with Evolution Requirements (SSRD 5.0)]

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 75/94

2.3 Operational Concept Satisfaction
• Summarize product's ability to satisfy the key operational concept elements and critical scenarios, including

critical off-nominal scenarios (Exception-Handling Scenarios)
• [Consistent with Operational Scenarios (OCD 5. 0)]

2.4 Stakeholder Concurrence
• Summarize stakeholder concurrence by reference to :

• WinWin negotiation results
• Memoranda of agreements

• Stakeholders may be anybody involved in the development process. For instance, a developer may claim that a
certain response time cannot be achieved in a crisis mode unless nonessential message traffic is eliminated.
Similarly, a customer may claim that the product does not satisfy his/her win conditions (e.g. cost).

• This section serves as a record of how such claims were resolved to the stakeholders' satisfaction.

3. Process Rationale
This section analyzes the ability of the development to satisfy the stakeholders' (e.g. customer) cost and schedule
constraints.

Integration and Dependencies with other components: Like the previous section, this section is also highly
dependent on other documents, foremost the Life Cycle Plan (LCP) and System and Software Requirements
Description (SSRD). Item 3.1 maps primarily to the capabilities in SSRD and milestones in LCP 2.2 and 2.3. Item 3.2
is a summary of LCP 2.1 and 2.2, with emphasis on priorities above. Item 3.3 is reasoning that the LCP is consistent
and doable (especially LCP 4).

3.1 System Priorities
• Summarize priorities of desired capabilities and constraints. Priorities may express time and date as well as quality

and others (e.g. performance).

3.2 Process Match to System Priorities
• Provide rationale for

• Ability to meet milestones
• Choice of process model: The decision table (Table 10) provides guidance on selecting an appropriate process

model for various combinations of system objectives, constraints and alternatives.
• Spiral Cycles, Anchor points
• Increments; Design-to-Schedule options

3.3 Consistency of Priorities, Process and Resources
• Provide evidence that priorities, process and resources match

• Budgeted cost and schedule are achievable
• No single person is involved on two or more full-time tasks at any given time
• Low priority features can be feasibly dropped to meet budget or schedule constraints

• Using the estimated Effort (Person-months) and Schedule from Budgets (LCP 5.2), show that the staffing levels
are enough, and that the project is achievable within the schedule.

• It is important to use a credible and repeatable estimation technique for the Effort and the Schedule.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 76/94

Table 10: Process Model Decision Table

Objectives, Constraints Alternatives
Growth

Envelope
Understanding

of
Requirements

Robustness Available
Technology

Architecture
Understanding

Model Example

Limited COTS Buy COTS Simple
Inventory
Control

Limited 4GL,
Transform

Transform or
Evolutionary
Development

Small
Business - DP
Application

Limited Low Low Low Evolutionary
Prototype

Advanced
Pattern
Recognition

Limited to
Large

High High High Waterfall Rebuild of old
system

Low High Complex
Situation
Assessment

High Low

Risk
Reduction
followed by
Waterfall High-

performance
Avionics

Limited to
Medium

Low Low-
Medium

High Evolutionary
Development

Data
Exploitation

Limited to
Large

Large
Reusable
Components

Medium to
High

Capabilities-
to-
Requirements

Electronic
Publishing

Very Large High Risk
Reduction
&Waterfall

Air Traffic
Control

Medium to
Large

Low Medium Partial COTS Low to
Medium

Spiral Software
Support
Environment

Conditions for Additional Complementary Process Model Options
Design-to-cost or Design-to-schedule Fixed Budget or Schedule Available
Incremental Development
(only one condition is sufficient)

Early Capability Needed
Limited Staff or Budget Available
Downstream Requirements Poorly Understood
High-Risk System Nucleus
Large to Very Large Application
Required Phasing With System Increments

4. Project Risk Assessment
Any combinations of capabilities or objectives, whose feasibility is difficult to assure, are major sources of risk. Risk
Assessment consists of risk identification, risk analysis, and risk prioritization. Table 11 gives major sources of risk.
Table 3 proposes some techniques for managing those risks (Risk management is covered in LCP 4.1). The project's
overall life cycle strategy described in Section 2.1 should be consistent with its approach to risk management. The
initial set of risks defined here will be updated throughout the project.

• Identify the major sources of risk in the project.
• Organize those into a Top-10 (or Top-N) risk items list to be monitored via the section on Risk Management and

Monitoring Procedures (LCP 4.1)

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 77/94

• Provide a description of all identified risks for the project, including risk exposure quantities.
• For critical risks, indicate the following:

- Description
- Risk Exposure: Potential Magnitude and Probability of Loss
- Risk Reduction Leverage: in reducing risk exposure
- Actions to Mitigate Risk
- Contingency Plan

• Identify low-priority requirements that can be left out in the case of schedule slippage

Table 11 Top-10 Software Risk Items

1. Personnel shortfalls
2. Schedules, budgets, process
3. COTS, external components
4. Requirements mismatch
5. User interface mismatch
6. Architecture, performance, quality
7. Requirements changes
8. Legacy software
9. Externally-performed tasks
10. Straining computer science

Additional guidelines:
There are numerous risk identification and analysis tools which can be applied in this section (COCOMO II is again
integral here). However, they can only give guidelines, not real answers. The best preparation for this section is to try
to construct the Feasibility Rationale and see where you have difficulties.

5. Analysis Results
• Identify architectural alternatives and tradeoffs
• Identify unfeasible architectures or rejected alternatives; document criteria for rejection to avoid having the

rejected architectural alternative selected in ignorance at some other point
• Describe feasible architectural alternatives which were rejected due to solution constraints on the way that the

problem must be solved, such as a mandated technology. Those architectural alternatives may be reconsidered
should the solution constraints be relaxed.

5.1 Commercial-Off-The-Shelf solutions
• List of existing COTS products that should be investigated as potential solutions
• Reference any surveys or evaluations that have been done on these products
• Is it possible to buy something that already exists or is about to become available? It may not be possible at this

stage to say with a lot of confidence, but any likely products should be listed here.
• Consider whether there are products that must not be used, and state the reason.

5.2 Components
• Describe candidate components, either freely available, bought-in or built-in-house, that could be used by this

project to achieve some functionality or decrease the development cost of the project
• Emphasize on reuse rather than reinvention.

6. Appendix
• List or provide any references to supporting documentation

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 78/94

Sources and Resources
These guidelines have drawn upon material from the following sources:

[Boehm, 1989] Boehm, Software Risk Management, IEEE Computer Society Press, 1989.

[Boehm, 1996] Boehm, B., "Anchoring the Software Process", IEEE Software, July 1996, pp. 73-82.

[Boehm, et al., 1997] Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1997), “Developing Multimedia Applications
with the WinWin Spiral Model,” Proceedings, ESEC/ FSE 97, Springer Verlag.

[Boehm, et al., 1998] Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1998), “Using the WinWin Spiral Model: A
Case Study,” IEEE Computer, July, pp. 33-44.

[Cichocki et al., 1997] Cichocki, A., Abdelsalam, A., Woelk, D., Workflow and Process Automation : Concepts and
Technology (Kluwer International Series in Engineering and Computer Science, Secs 432), Kluwer Academic Pub,
1997.

[EIA/IEEE J-STD-016] Commercial Standard EIA/IEEE J-STD-016

[IEEE, 1991] IEEE Software Engineering Standards Collection, Spring 1991 Edition. New York: Institute of Electrical
and Electronics Engineers.

[IEEE, 1991] IEEE, IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990, February
1991.

[MIL-STD-498] Defense Standards MIL-STD-498

[Potts et al, 1994] Potts, C., Takahashi, K., Anton, A. (1994), Inquiry-Based Requirements Analysis, IEEE Software

[Royce, 1998] Royce, W. Software Project Management: A Unified Framework. Addison Wesley, 1998.

[Sommerville, 1995] Sommerville, I., Software Engineering, Addison Wesley, 1995.

Since the guidelines have been integrated from multiple sources, they will not necessarily be fully consistent with the
guidelines in any individual source. See the following resources for useful perspectives and additional guidelines

UML Guidelines
[Quatrani, 1998] Quatrani, Terry. Visual Modeling with Rational Rose and UML, Addison Wesley, 1998.

Operational Concept Description
[AIAA, 1992] AIAA Recommended Technical Practice, Operational Concept Description Document (OCD),
Preparation Guidelines, Software Systems Technical Committee, American Institute of Aeronautics and Astronautics
(AIAA), March 1, 1992.

[Fairley et al, 1994] Fairley, R., Thayer R., and Bjorke P., The Concept of Operations: The Bridge from Operational
Requirements to Technical Specifications, IEEE, 1994.

[Lano, 1988] Lano, R.J., A Structured Approach for Operational Concept Formulation (OCF), In Tutorial: software
Engineering Project Management, edited by R. Thayer, Computer Society Press, 1988.

System and Software Requirements Definition
[In, 1998] In, H. (1998). Conflict Identification and Resolution for Software Attribute Requirements. Ph.D. Thesis,
University of Southern California, Los Angeles, CA.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 79/94

[Robertson, 1998] Template. James & Suzanne Robertson. Atlantic Systems Guild
http://www.atlsysguild.com/Site/Robs/Templsects.html

System and Software Architecture Description
C2 Architectural style (see http://www.ics.uci.edu/pub/arch/c2.html)

[Port, 1999] Port, D., Integrated Systems Development Methodology, Telos Press (to appear)

Feasibility Rationale

Life Cycle Plan
[AT&T, 1993] Best Current Practices: Software Architecture Validation, Lucent/AT&T, 1993.

[CMU-SEI, 1995] Paulk, M., Weber, C., Curtis, B. The Capability Maturity Model: Guidelines for Improving the
Software Process (SEI Series in Software Engineering), Addison-Wesley, 1995.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 80/94

Appendix
A. Prototyping Results
B. Suggested WinWin Taxonomy for MBASE
C. Quality Attribute Requirements
D. Requirements Checklist
E. Common Definition Language (CDL) For MBASE

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 81/94

Appendix A. Prototyping Results

1. Objectives
• Describe the critical issues and risks that the prototype is attempting to resolve and the uncertainties that the

prototype is trying to address

Common Pitfall
One common pitfall when prototyping is to fail to describe the prototype from the perspective of the client. In
particular, the prototype should be user-oriented, and should avoid abstracting elements. It helps to use realistic sample
data in the various prototype screens, e.g., use 'History', 'Geography', as opposed to 'Subject 1', 'Subject 2', 'Subject 3'.

2. Approach

2.1 Participants
• Describe any participation on the part of the clients in the prototyping effort: e.g., changes requested after initial

evaluation
• Describe how effective was the prototype in overcoming initial IKIWISI (I'll Know It When I See It) client

expectations
• Mention whether this is the first prototype, or a revised one, including changes suggested by client, etc...

2.2 Tools
• Describe briefly the tool used to develop the prototype and the reasons for choosing that tool.
• Describe how adequate the tool turned out to be to your needs, or whether you are contemplating using a different

tool
• Example: "We started by creating a Web based prototype. But we decide to move to Microsoft Access since the

system does not require public access and will be used only at the reference librarian desk".

3. Initial Results
For each aspect of the system that you prototyped, describe the:

a. Current way of performing activity
Example: "Currently, to reserve a room, patrons go and look at the Facility schedule and look for empty slots"

b. Proposed way of performing activity
• Include screen shot of relevant prototype screen
• Brief explanations on how system will be used as illustrated by prototype screen (You may annotate explanations

directly on screen shots)
• You may propose multiple screens, and indicate which one your client preferred (or maybe hasn't decided yet

which one to use).
Example:
"ScreenName1: After entering date, Patron clicks on 'Find Unused Time Slot' button to obtain a list of all the time slots
when the room is not booked.
ScreenName2: Patron enters Date and Time, and clicks on 'Check for Availability' button, to obtain whether the
Room is available on that day and time, or not. The patron keeps trying until he finds a available slot".

4. Conclusions
• List by order of priority the items that you will be looking into next, during the next round of prototyping
• List the most critical risks that you hope to resolve by doing further prototyping
• Example: "Current prototype suffers from navigability problems: we will be looking into improving the usability

and the navigability using frames, site maps, etc."

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 82/94

Appendix B. Suggested WinWin Taxonomy for MBASE
The suggested domain taxonomy to be used as a checklist and organizing structure for the WinWin requirements
negotiation. Each WinWin stakeholder artifact should point to at least one taxonomy element (modify taxonomy as
appropriate). Each taxonomy element should be considered as a source of potential stakeholder win conditions and
agreements. The WinWin taxonomy roughly corresponds to the table of contents of the System and Software
Requirements Definition (SSRD). Mapping the WinWin taxonomy to the SSRD outline is straightforward, but in some
cases, some sections need to be combined. In particular, Operational Modes are described in the SSRD with System
Requirements. The reason is that the same system functionality may lead to different results depending on the mode.

1. Project Constraints (===>SSRD 2.2 Project Requirements)
1.1 Budget Constraints
1.2 Schedule Constraints
1.3 Staffing Constraints
2. Application Capabilities (===>SSRD 2.3 System Requirements)

2.1 Operational Modes
2.2 User Classes
2.3 Mission Capabilities. These will vary depending on whether the mission involves a multimedia archive,
selective dissemination of information, data analysis, etc.
2.4 Support Capabilities

2.4.1 Help
2.4.2 Administration

2.4.2.1 User Account Management
2.4.2.2 Usage Monitoring and Analysis

2.4.3 Maintenance and Diagnostics
3. Quality Attributes (===> SSRD 3. Quality Attribute Requirements)

3.1 General Qualities
3.1.1 Correctness
3.1.2 Simplicity
3.1.3 Consistency
3.1.4 Completeness
3.1.5 Coherence

3.2 Dependability
3.2.1 Reliability
3.2.2 Accuracy
3.2.3 Availability
3.2.4 Survivability
3.2.5 Serviceability
3.2.6 Verifiability
3.2.7 Resilience

3.3 Security
3.3.1 Integrity
3.3.2 Privacy
3.3.3 Audit
3.3.4 Confidentiality

3.4 Safety
3.5 Interoperability

3.5.1 Compability
3.6 Usability

3.6.1 Mission Orientation
3.6.2 Comprehensiveness
3.6.3 Controllability
3.6.4 Ease of Learning
3.6.5 Ease of Use
3.6.6 Help requirements

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 83/94

3.7 Performance
3.7.1 Processing Efficiency
3.7.2 Memory Efficiency
3.7.2 Storage Efficiency
3.7.3 Network Efficiency

3.8 Adaptability (Evolvability)
3.8.1 Portability
3.8.2 Flexibility
3.8.3 Scalability/Expandability/Extendability/Extensibility
3.8.4 Modifiability
3.8.5 Maintainability
3.8.6 Reconfigurability

3.8 Reusability
4. Interfaces (===>SSRD 4. System Interface Requirements)

4.1 User Interfaces Requirements
4.1.1 Graphical User Interfaces
4.1.2 Command-Line Interfaces
4.1.3 Application Programming Interfaces
4.1.4 Diagnostics

4.2 Hardware Interfaces
4.3 Communications Interfaces
4.4 Other Software Interfaces (SIRSI, BRS, etc.)

5. Environment and Data (===> SSRD 5. Environment and Data)
5.1 Design and Construction Constraints

5.1.1 Tools
5.1.2 Programming Languages
5.1.3 Computer Resources
5.1.4 Standards Compliance

5.2 Packaging
5.3 Implementation
5.4 Software Support Environment Requirements

6. Evolution (===>SSRD 6. Evolution Requirements)
6.1 Capability Evolution
6.2 Interface Evolution
6.3 Technology Evolution
6.4 Environment Evolution
6.5 Workload Evolution

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 84/94

Appendix C. Quality Attribute Requirements
The following glossary is based on the IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std 610.12-1990, February 1991.

Accuracy
(1) A qualitative assessment of correctness, or freedom from error; (2) A quantitative measure of the magnitude of error

Adaptability
Adaptability is defined by the ease with which a system or component can be modified for use in applications or
environments other than those for which it was specifically designed. Syn: Flexibility

Audit
Specification of the required audit checks or various audit trails the system should keep to build a system that complies
with the appropriate audit rules. This section may have legal implications

Availability
The degree to which a system or component is operational and accessible when required for use. Often expressed as a
probability. See also: Error Tolerance; Fault-tolerance; Robustness

Compatibility
(1) The ability of two or more systems or components to perform their required functions while sharing the same
hardware or software environment (2) The ability of two or more systems or components to exchange information (See
also: Interoperability)

Complexity
(1) The degree to which a system or component has a design or implementation that is difficult to understand and
verify. Contrast with: simplicity

Consistency
The degree of uniformity, standardization, and freedom from contradiction among the documents or parts of a system
or component.

Correctness
Correctness is defined by: (1) The degree to which a system or component is free from faults in its specification,
design, and implementation; (2) The degree to which software, documentation, or other items meet specified
requirements; (3) The degree to which software, documentation, or other items meet user needs and expectations,
whether specified or not.

Dependability
Dependability is defined as “that property of a computer system such that reliance can justifiably be placed on the
service it delivers” [Laprie, 1992]. Depending on the intended application of the system dependability is usually
expressed as a number of inter-dependent properties such as reliability, maintainability and safety. It refers to a broad
notion of what has historically been referred to as “fault tolerance”, “reliability”, or “robustness”

Efficiency
Efficiency is defined by the degree to which a system or component performs its designated functions with minimum
consumption of resources.

Error Tolerance
The ability of a system or component to continue normal operation despite the presence of erroneous inputs. See: Fault
tolerance, robustness

Expandability/Extendability/Extensibility

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 85/94

Expandability is defined by the easy with which a system or component can be modified to increase its storage or
functional capability.

Fault-tolerance
(1) The ability of a system or component to continue during normal operation despite the presence of hardware or
software faults. See also: error tolerance; fail safe; fail soft; fault secure; robustness

Flexibility
Flexibility is defined by the easy with which a system or component can be modified for use in applications or
environments other than those for which it was specifically designed.

Integrity
Integrity is defined by the degree to which a system or component prevents unauthorized access to, or modification of,
computer programs or data.
Example: "Identical up-to-date booking information must be available to all users of the system."

Interoperability
Interoperability is defined by the ability of two or more systems or components to exchange information and to use the
information that has been exchanged.
Describe other platforms or environments on which the system is expected to run without recompilation.
Example: "The program should be binary compatible with Windows 3.1, Windows 95 and Windows 98 "

Legality
Describe any legal requirements for this system, to comply with the law to avoid later delays, lawsuits and legal fees.
If the legal requirements are above average, then this section might need to be entirely revisited
Example: "Personal information must be implemented so as to comply with the data protection act."
Example: "The system shall not use any image formats that might infringe with existing copyrights or pending
legislation (e.g., GIF)"

Maintainability
Maintainability is defined by: (1) The easy with which a software system or component can be modified to correct
faults, improve performance or other attributes, or adapt to a changed environment; (2) The easy with which a
hardware system or component can be retained in, or restored to, a state in which it can perform its required functions.

Memory Efficiency
List of memory usage requirements that have a genuine effect on the system's ability to fit into the intended
environment to set the client and user expectations.
Example: "The system should be able to run on a multi-tasking system with 4MB of free memory"
Example: "Upon exit, the server shall return all the memory it allocates to the pool of free memory on the host
computer without any memory leaks".

Modularity
The degree to which a system or computer program is composed of discrete components such that a change to one
component has minimal impact on other components.

Network Efficiency
List of network usage requirements that have a genuine effect on the system's ability to fit into the intended
environment to set the client and user expectations.
Example: "The system should not increase the traffic on the current network by more than 10% "

Performance
Performance is defined by the degree to which a system or component accomplishes its designated functions within
given constraints, such as speed, accuracy, or memory usage.

Political Correctness

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 86/94

Describe any special factors about the product are necessary for some political or socioeconomic reason: the reality is
that the system has to comply with political requirements even if you can find a better/more efficient/more economical
solution.
Example: "Our company policy says that we must buy our hardware from Unisys."

Portability
The ease with which a system or component can be transferred from one hardware or software environment to another.
• Describe other platforms or environments to which the system must be ported to quantify client and user

expectations about the platforms and future environments in which the system is expected to run.
• Example: "The source code should compile correctly on Solaris and Linux"

Privacy/Confidentiality
Specification of who has authorized access to the system, and under what circumstances that access is granted.

Processing Efficiency
List of response time requirements that have a genuine effect on the system's ability to fit into the intended environment
to set the client and user expectations for the response time of the system.

Reliability
Reliability is defined by the ability of a system or component to perform its required functions under stated conditions
for a specified period of time.

Reusability
Reusability is the degree to which a software module or other work product can be used in more than one computer
program or software system.

Software reusability means that ideas and code are developed once, and then used to solve many software problems,
thus enhancing productivity, reliability and quality. Reuse applies not only to source-code fragments, but to all the
intermediate work products generated during software development, including requirements' documentation, system
specifications, design structures and any information the developer needs to create software

Robustness
The degree to which a system or component can function correctly in the presence of invalid inputs or stressful
environmental conditions. See also: error tolerance; fault tolerance

Scalability
A quantification of how the system should be able to adapt to an increase in the workload without imposing additional
overhead or administrative burden.

Storage Efficiency
The degree to which a system or component performs its designated functions with minimum consumption of available
storage.
Example: "The system should be able to run with only 40MB of available disk space "

Usability
Usability is defined by the ease with which a user can learn to operate, prepare inputs for, and interpret outputs of a
system or component.

Ease of Learning
A statement of the expected learning time, and any special training needed, for the expected users of the system to
guide the designers of the system's interface and functionality and to determine whether or not the user can use the
system after the number of hours training/familiarization/use (plus description of training program if applicable) for
each type of user.
Example: "The average user should be able to produce a virtual tour within 1 hour of beginning to use the system,
without resorting to the manual."

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 87/94

Make sure that you have considered the ease of learning requirements from the perspective of all the different types of
users.

Ease of Use
A statement of how easy the system is to use to guide the system's designers.
Example: "The average user must have an error rate less than 2%."
Make sure that you have considered the usability requirements from the perspective of all the different types of users. It
is necessary to make some measure of the system's intended usability. This may be that the user labs pronounce that the
system is usable, or that it follows all the Apple/Windows interface guidelines, or simply that it must be popular with
the majority of users.

Help requirements
A description of the help that the system will provide. The help requirements might become so complex that it is better
to treat help as a separately specified system.
Example: "The system must provide context specific help. The user must be able to select an artifact and receive
instruction about its use."
These might be requirements that relate to all events (globally accessible help facilities) or they might be requirements
that relate to individual events or functional requirements.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 88/94

Appendix D. Requirements Checklist
This checklist serves as a summary (or feature list) for the customer. It serves as a risk-driven approach to drop or defer
features. Organize the requirements by sub-system (if applicable).

SUB-SYSTEM 1
Requirement 1.1

• Synopsis: Provide a brief description of this requirement
• Criticality: Rate (High, Nominal, Low) the importance of this requirement is to the overall

system (High, Very High)
• Risks: Rate (High, Nominal, Low) the risk associated with the satisfaction of requirement, taking

into account external changes, dependencies, etc...Include assumptions and constraints on the
availability of COTS packages, or other externally furnished components. Alternatively, you may
characterize the difficulty in implementing the requirement.

• Reference: Include reference to the corresponding elements of the documentation for further
information

Requirement 1.2
…

SUB-SYSTEM 2
Requirement 2.1
...
Requirement 2.2
…

...
SUB-SYSTEM M

Requirement m.1
...
Requirement m.2
…

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 89/94

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 90/94

Appendix E. COMMON DEFINITION LANGUAGE (CDL)
for MBASE
List of Abbreviations
A : Analysis
DD: Domain Description
D: Design

Abstract Class D: A class which can be subclassed but not
instantiated.
Abstract D: Used as an adjective to qualify a class or type that
cannot be directly instantiated (‘made concrete’). An abstract
class or type needs to be specialized.
Abstraction DD: A simple interface on complex information. An
abstraction is a representation of something, either tangible or
conceptual.
Abstractionist: A person responsible for class and class category
design. An abstractionist is charged with evolving and
maintaining the system’s micro-architecture.
Accessibility A: Refers to whether an attribute is visible and
whether or not it can be changed.
Access Qualities: Readable, Settable, Modifiable, Fixed.
Action: An operational quality. Events which are initiated by
components in launching an operation.
Actor DD: An entity which initiates behavior of its own and is
responsible for performing that behavior.
Actor A: An object which initiates behavior of its own and is
responsible for performing that behavior.
Algorithm D: That portion of a behavior that actually carries out
the work of the behavior, independent of any decision-making
(policy making) necessary to determine which algorithm to
execute.
Analogy: The identification of groups of similar relationships
between abstractions. An operation abstraction.
Analog A:
Analogy: A resemblance between two objects that does not
indicate a common classification.
Analysis DD: The creation of a precise, consistent description of
a system domain, without consideration of any particular
implementation.
An early phase of development, focused upon discovering the
desired behavior of a system together with the roles and
responsibilities of the central objects that carry out this behavior.
Architect: The person or persons responsible for evolving and
maintaining the system’s architecture. Ultimately, the architect
gives the system its conceptual integrity.
Architecture: The logical and physical structure of a system,
forged by all of the strategic and tactical design decisions applied
during development. A well-structured object oriented
architecture consists of a sea of classes together with the
mechanisms that animate those classes.
Describes the static organization of software into subsystems
interconnected through interfaces and defines at a significant level
how nodes executing those software subsystems interact with
each other.

Association: A mapping of a common piece of data between two
representational subsystems.
Attribute DD: The quality of a particular abstraction which holds
a value. Attributes do not necessarily become variables at
implementation. Attributes are the memory part of a component.
An attribute represents a property of the object. Attributes are
owned by the object and are local to it, that is they are not shared
with other objects, but they may be public so that other objects
may read or set them. An attribute has a type that defines the type
of its instances.
Audience: The person or persons who act as the consumers of an
abstraction’s interface.
Behavior Model: A representation of the behaviors in a system.
Behavior: Maps to objects.
Boundaries of Control: The point at which a behavior requires
interaction with users or other elements outside the system.
Candidate Key: The combination of attributes that uniquely
identifies a component or an object. An attribute quality.
Cardinality: The number of elements in a given set. In relation to
objects, cardinality indicates how many of the objects can exist at
one time. The cardinality of a relationship indicates the number of
objects that the relationship connects to the most common are ‘to
one’ and ‘to many’.
Class: A description of a group of objects with similar qualities
including attributes, behavior, relationships, constraints, and
dependencies.
Classification: Organizing a set of abstractions according to their
common qualities. Classification allows you to reduce complexity
in a object model. by making general statements about groups of
objects.
Classification Engineering: Taking groups of things and
organizing them into hierarchies.
Coherence: A measure of an abstraction’s elegance. An
abstraction is coherent if all of its quality resolutions are both
correct and consistent.
Cohesiveness: A measure of an abstraction’s elegance. The
degree to which an abstraction’s qualities fit with the defining
quality and with each other.
Collection: A contains relationship. An address book object is an
example of a collection, where the address book object contains a
set of a address objects.
Common Definitional Language (CDL): A glossary. A
common and consistent set of problem space and solution space
terminology developed during modeling. Used as a catalog and
thesaurus during systematic reuse domain engineering to describe
the key concepts.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 91/94

Comparator: A similarity between two abstractions. If the
similarity between the two abstractions is expressed in terms of
each abstraction’s defining quality, the Comparator is referred to
as the Main Comparator. Contrast with Discriminator.
Completeness: A measure of elegance describing whether all of
an abstraction’s information can be accessed from the interface.
Component: A meta-type whose instances are ‘part-of’ another
abstraction. Components are needed to describe the system to
domain experts. Components are compositions of objects
(sometimes only one). What an entity is in the domain
description, a component is in the system analysis. Components
are nouns.
Composition: Creating a new abstraction by combining smaller
components into a larger abstraction. Contrast with
Decomposition. An operation on an abstraction.
Conceptual Dependency: A dependency which affects the
defining quality of the object. For example the make and model of
a car are conceptual dependencies.
Conceptualization: The earliest phase of development, focused
upon providing a proof of concept for the system and
characterized by a largely unrestrained activity directed toward
the delivery of a prototype whose goals and schedules are clearly
defined.
Concrete Class: A class which can be both subclassed and
instantiated.
Concrete:
Constraint: A restriction on the resolution of a component’s or
an object’s quality. For instance, an attribute might have a
minimum value, or a set of illegal values. An attribute quality
Context Boundary:
Context: The surrounding environment of a software project.
Controller: A software component that acts as a messenger
between the representational subsystems.
COTS: Commercial Off The Shelf
Coverage: A measure of elegance, with regard to an object’s
defining quality. A defining quality has good coverage if it
includes everything that should be a part of the abstraction.
Custom:
Customer: Customers request application systems, place
requirements on them, and usually pay for the systems.
Customers also interact when deciding on needed features,
priorities, and roll-out plans when developing new versions of
component systems and the layered system as a whole.
Customers can be both internal, such as business process owner,
or external, such as another company.
Decomposition: Breaking an abstraction into smaller
components. An operation on an abstraction.
Defining Quality: The key quality or collection of qualities that
gives an abstraction its identity. Most important factor in
determining how the component fits into the overall architecture.
Delegate: An object that acts as the request of another object.
Dependency: A requirement that specifies how one element of a
system affects another. There are three possible dependencies.
Dependencies can be Semantic – how a quality of an abstraction(
object, attribute, behavior, relationship) is resolved under a given
set of conditions, e.g. vacation depends on start date; Functional
– describes how a component uses other components to assist in
providing behavior, e.g. alarm – response; or Conceptual –
effects the defining of qualities, e.g. what a car is may depend on
what model it is. Dependency is an attribute quality.

Derived: An attribute is derived if it can be computed from
another attribute (e.g., age from date of birth)
Design: A plan for implementation, accomplished by the mapping
of analysis models onto a software system.
Design Class: A design class is an abstraction of a class in the
system’s implementation. A design class defines a set of design
objects with attributes, associations and methods.
Design Model: The design model serves a higher level view of
the source code – a “blueprint” of how the source code is
organized, and some of its key features. The design model
consists of design classes and types and designs of subsystems.
Design Object: A design object represents an abstraction in the
system’s implementation. A design object is an instance of a
design class and type.
Destination Component: The component that the relationship is
being made to.
Discriminator: A difference between two abstractions. If the
difference between the two abstractions is expressed in terms of
each abstraction’s defining quality, the discriminator is referred to
as the Main Discriminator.
Distribution:
Domain: The part of the real world that a particular software
project is intended to model. Compare with Context.
Domain Expert: A person very familiar with the subject matter
of the domain and how it fits together.
Domain Model: The sea of classes in a system that serve to
capture the vocabulary of the problem space; also known as a
conceptual model. A domain model can often be expressed in a
set of class diagrams whose purpose is to visualize all of the
central classes responsible for the essential behavior of the
system, together with a specification of the distribution of roles
and responsibilities among such classes.
Elegance: An abstraction that conveys its underlying information
using the simplest possible interface. A measure of an
abstraction’s elegance is its Information-to-interface Ratio.
Qualities that directly impact elegance are: Completeness,
Cohesiveness. Sufficiency, and Coherence.
Encapsulation: A property of object-oriented programs in which
an object’s implementation is hidden behind its interface.
Engineering: Creating cost-effective solutions to practical
problems by applying scientific knowledge to building things of
value.
Engineering Abstractions: Construction of elegant abstractions
to increase the information/interface.
Enterprise Model: The complete model of a domain, including
object structures and behaviors.
Entity (Organization): Any identifiable set of individuals,
policies or systems.
Entities Model: Entities are the fundamental building blocks of
the Domain Description. It consists of a notebook of entity
inspectors which include : Description, Name, Properties,
Operations, and Connections.
Equivalence: When used during object classification, equivalence
refers to the ability of one object to be translated into another
through a change in the resolution of one or more of its qualities.
There are five types of equivalence: Attribute Equivalence,
Relational, Semantic, Roles, and Operational.
Event: The stimulus to the system and part of operations.
Exception: An operation quality. Responses to domain errors in
the execution of an operation.

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 92/94

Extensible:
Factoring: Identifying common elements of two or more
abstractions, typically decomposition followed by composition.
An operation abstraction.
Fixed: A value that once set remains unchanging. A quality of an
attribute. A measure of accessibility.
Flexible:
Framework: A collection of interdependent classes that provides
a set of services for a particular domain; a framework thus exports
a number of individual classes and mechanisms that clients can
use or adapt.
Functional: See Functional Dependency under Dependency.
Generalization: Creating a more inclusive classification. Within
an abstraction hierarchy, generalization results in “kind of”
relationships. Contrast with Specialization. An operation on an
abstraction. There are three special cases of generalization:
Leading Special Case: easy to handle and very accessible in
which it is seen that other cases follow; Representative Special
Case: is a specialization achieved by resolving some of the
abstraction’s qualities in an arbitrary way; Extreme Special
Case: sets boundaries for other cases.
Goal: motivation neither expressed nor implied by
responsibilities. From notes, “factors that contribute to the choices
and aspirations of the organization.”
Hierarchy: A directed tree of abstractions with transitive
relationships between levels.
Homomorphism: An analogous mapping from one object
relationship to another. E.g. mapping of parts of federal
government to parts of state government.
Identity: Designation of a component such as a name or phone
number. An attribute quality.
Identifier:
Implementation:
Information: Processed data that conveys more than the data
itself; relationships or descriptions of particular data.
Information-to-Interface Ratio: The amount of information
contained within an abstraction as compared with the size of the
interface used to convey that information. The information-to-
interface ratio is an expression of how quickly an abstraction will
be understood, and whether that understanding will be correct.
Inheritance: An object-oriented mechanism that permits classes
to share attributes and operations based on a relationship-usually
subtyping.
Initial value:
Input: An operation quality. Any data that is required to carry
out the operation.
Inspectors: Inspectors are output descriptions of: components,
attributes, relationships, and operations AND ONE MORE????.
Spells out their qualities.
Instantiated:
Instance:
Instance Variable:
Interaction: mutual or reciprocal action or influence between
entities and/or systems.
Interface: Set of qualities of an object/entity that may be
extracted or changed. Refers to that part of an object/entity which
is accessible to others.
Law of Demeter: A hierarchy of operations with respect to
where messages should be sent, e.g. first to itself.
Leaf Class: A class which can be instantiated but not subclassed.

Leaf:
Levels: Abstractions that can be classified together are considered
to be at the same level. See Metalevel
Maintainable:
Mapping: A constraint requiring the presence of a particular
model element whenever another is present. Mappings are most
commonly used to express two-way relationships between
objects.
Mapping to Components/Objects: Assignment of operations to
components
Mechanism: An element of software that identifies or provides
system-wide object behavior.
Messaging:
Meta Class: A class that describes another class.
Metadata: An object which holds information that describes
another object. For example, a recipe is metadata.
Meta Level: Abstractions that describe other abstractions.
Metatype: A classification of classes that describe how those
classes fit within the domain. Metatypes are not superclasses.
Methods:
Metric: Measures. E.g. elegance metrics such as cohesiveness,
consistency etc.
Model: An organized collection of abstraction levels.
Modifiable: : Refers to the object’s ability to change value. : A
quality of an attribute. A measure of accessibility.
Notification:
Object: An encapsulated packet of data and a behavior that acts
as abstraction of a particular domain element or programming
construct.
Operation: A task which is executed in response to the stimulus
of an event. The functionality of a component. Involve data flow,
control flow and state diagrams. Map to abstractions (see
behavior).
Operations Engineering: Facilitates ways of organizing and
managing complex operations, e.g. through assembling operations
into hierarchies.
Operation’s Qualities: Trigger, Scenario, Preconditions,
Postconditions, Inputs, Outputs, Actions, Exceptions.
Operations Classification: Organizing operations according to
abstractions.
Output: An operation quality. Any data that is produced by the
operation.
Owner:
Participant:
Pattern:
Persistence:
Policy: That portion of a given behavior that decided what the
behavior should be doing. Contrast with algorithm.
Polling:
Postcondition: An operation quality. The state of a system after
an operation has been executed.
Powerful:
Precision: A measure of elegance, with regard to an object’s
defining quality. A defining quality is precise it is excludes
everything that is not part of the abstraction.
Precondition: An operation quality. A prerequisite set of
conditions that must be true in order for an operation to proceed,
Primitive Method: A method that directly accesses an instance
variable.
Primitive:

Guidelines for Life Cycle Objectives/Life Cycle Architecture Deliverables 02/15/99

© Center for Software Engineering, University of Southern California. All Rights Reserved. 93/94

Property:
Quality: An atomic unit of an abstraction’s interface. Conversely,
the interface of an abstraction is the set of all of the abstraction’s
qualities.
Quality Resolution:
Range:
Readability: Visibility of the value. All attributes should be
readable. A quality of an attribute. A measure of accessibility
Reflexive:
Reflexivity: Indicates whether a relationship can have the same
object at both ends. Reflexive relationships can; irreflexive
relationships cannot.
Relational Attribute: An attribute that is applied to an object
only when that object is participating in a particular relationship.
(e.g. salary is not a quality of employee or employer but of their
relationship).
Relational:
Relationship: A conceptual connection between two or more
components or objects. A complex relationship is a composition
of simple relationships and include bidirectional relationships
(simple “one to many” relationships) and symmetric relationships
(a relationship that has the same qualities when viewed from
either direction (e.g. “next to”)).
Relationship Constraints: Three of them (Reflexivity –
relationships that have the same components as both the source
and destination e.g. lawyers as own clients; Directed – limits the
possible relationships between two components to one or more
relationships e.g. selected from; Mappings – the existence of a
relationship requires the existence of another – e.g. ‘works for’
implies ‘employed by’.
Relationship Types: ‘Part of’ relationship (the relationship
objects within a component have to their container). ‘Contains’
relationship is the reverse of the ‘part’ relationship (deletion of the
container deletes the parts). ‘Composite’ relationships, four of
them: (Collections –e.g. address book; Aggregations – e.g. an
automobile engine with its aggregation of parts; Groupings – like
an aggregation but if you delete all the parts the group is deleted
as well; Partnerships – where the deletion of a relationship
between objects causes the container to be deleted)
Relevance: The degree to which a quality is important in the
current context.
Representation:
Required:
Responsibility: System responsibilities are a list of tasks the
final system will be responsible for. Something to be done.
Reuse: Further use or repeated use of an artifact. Typically
software programs that were designed for use outside their
original context.
Robust:
Role: How an object is used, as opposed to what it is.
Role Name: How the source component refers to its destination.
Scaleable:
Scenario: An operation quality. A description of the steps taken
to complete the operation.
Scope: The value of an attribute and whether or not another
component of the same type can have the same value. A quality
of an attribute.
Selector: A relational attribute which uniquely identifies an
object in the context of the relationship to which it belongs.

Semantic: Semantic equivalence is one component simply
representing the state of another component. E.g., bank account
can be represented by open account.
Settable: :. Refers to the value being provided by the outside
world. A quality of an attribute. A measure of accessibility
Source Component: The component that originates the
relationship. (See also Destination component).
Source: Specialization: Refining a classification by adding more
qualities to it. Contrast with Generalization.
Specialization: Refining a classification by adding additional
qualities to it (sub class). .An operation on an abstraction.
Spiral: A model of a system development which repeatedly
cycles from function to form, build, test, and back to function.
State: A combination of attributes and relationships that affects
the behavior of an object and has well-defined transitions to or
from other discreet states. E.g. solvency of a bank account. State
may be represented by an attribute.
Sub-class:
Sub-type: A more detailed, more exclusive class that has more
qualities than the class which is the supertype.
Subtyping: is also –type: A more detailed, more exclusive class
that has more qualities than the class which is the supertype.
Subtyping is also referred to as specialization.
Sufficiency: A measure of an abstraction’s elegance. The degree
to which all of an abstraction’s information can be accessed in a
reasonable amount of time, or with a reasonable amount of
knowledge about the domain.
Super-type: Similar to generalization. Creating a less-specific,
more inclusive class from a set of subclasses.
System: A collection of things or elements which, working
together, produce a result not achievable by the things alone. A
collection of connected units that are organized to accomplish a
specific purpose.
Target:
Task:
Transitive (Transitivity): The relationship: If A then B, If B then
C. Therefore if A then C.
Trigger: An operation quality. A set of conditions which, when
true, cause an event to be sent to stimulate an operation..
Types: Types of components in the same class must share all
qualities of other components in that class. E.g. names.
Validation:
Value Class: A class that is used to represent an atomic value,
such as a string or a number.
Value:
Variable:
Waterfall: A development model based on a single sequence of
steps

