Acquisition of a COTS-based Command and Control System for Legacy and New Satellites

Maj Joe Romero and Lt Col Steve Hargis
MILSATCOM Joint Program Office

Mr. Sidney Hollander
The Aerospace Corporation

Maj Ed Bohn
HQ AFSPC/DRNC

4 March 2003
Command & Control System-Consolidated (CCS-C)

Mission
Develop, deploy and sustain an integrated MILSATCOM Satellite Control System

Capabilities
- Launch and S-band on-orbit command and control of MILSATCOM satellites
- Integrated satellite operations center
 - DSCS III, Milstar, WGS, AEHF
- Training systems same as operational systems
- Non-collocated backup
Program Schedule

Phase II

<table>
<thead>
<tr>
<th>Major Initial Reviews</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDR</td>
<td></td>
<td>△</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td></td>
<td></td>
<td>△</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBR</td>
<td>△</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDL</td>
<td>△</td>
<td>△</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT&E</td>
<td>△</td>
<td>△</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCS-C

- Core SW/DB Development/Objective SW Development Lab
- Integrated System
 - 3SOPS (SOC 32 & 31)
 - 4SOPS (SOC 42/41)
 - Mission Trainer and Backup SOC

DSCS III

- SV 1-13
- FDE

Milstar

- SV 1-5
- MUS
- FDE

Wideband Gapfiller System

- IOC
- L1
- L2
- L3

Advanced EHF

- DB/MUS

TCS

- DB/MUS

Global Network – Global Power

As of Feb 03
Acquisition Strategy Development

First things first
Drivers

- Limited lifetime of legacy ground system
- Schedule for Wideband Gapfiller on-orbit support capability
- Advanced EHF (AEHF) launch support capability
- Development cost and schedule control
Market Survey – Early Industry Involvement

- Extensive research
 - Discussions with industry
 - Independent product surveys
 - Ground system marketplace analyses
- Determined the availability and capability of:
 - Current satellite ground system products
 - Typical commercial practices for:
 - Contract type/terms and conditions
 - Testing/Maintenance/Warranties
- Impacts
 - Identified a robust commercial market for Satellite Command and Control Systems
Multi-Phase Strategy

- Initial Competition
 - Multiple offerors
 - Analysis of system objectives and requirements
 - System design descriptions
 - Technical approach to mitigating government-identified technical, cost, and schedule risks.

- Cost proposals:
 - Demonstration Phase
 - Four-year Development Phase
 - FFP for COTS hardware/software/installation
 - CPAF for development
 - Five years of sustainment
Multi-Phase Strategy (cont’d)

- **Demonstration Phase**
 - Two contractors
 - Draft System/Subsystem Specifications, engineering studies, & system design documents
 - Prototype of initial CCS-C capabilities
 - Demonstration conducted at CERES, Schriever AFB, approximately 7 months after contract award (Oct 01)

- **Downselect**
 - CFI/downselect NOT full/open competition
 - Call For Improvement (CFI) to Demo Phase contractors
 - Release Nov 01
 - Downselect to one contractor
 - Development/Sustainment Options award Mar 02
“Fly Before You Buy”

What really happened in the Demonstration Phase
Objectives

- Downselect between two contractors to award development/sustainment options
- Reduce development risk and uncertainty
 - Overcome history of COTS integration development overruns
 - Assess impact of program-unique requirements on COTS-based system architectures
- Validate contractors’ system and proposal claims
 - Demonstrated ability to interface with MILSATCOM-unique vehicles
- Hands-on operator feedback in a “real world” environment
 - “Fly Before You Buy” - Software Engineering Institute (SEI) and Industry Best Practice
- Forum for interaction and technical interchange among operators and contractors
Programmatic Challenges

- Personnel constraints
 - Shortages and Transitions
 - Involving other program stakeholders
- Fiscal Constraints due to budget reductions
- Managing two (competing) contractor teams
 - Information Separation
 - Workload and division of labor
 - GFP delivery
Maintaining Fair Competition

- Managed two unique contractor approaches and organizational structures
- Prevented technical transfer
 - Ideas from KTR A getting to KTR B, vice versa
- Prevented unfair competitive advantage
 - Contractor with access to useful information and resources
- Briefed Rules of Engagement to government stakeholders and contractors early
Minimizing Requirements Creep

- Demo actually provided a mechanism for managing requirements creep
 - Contract structured to allowed for some, but not significant, changes to requirements
 - Became a powerful control on new requirements
- Still had numerous stakeholders who wanted to add “new” requirements
- Strong leadership at AFSPC significantly contributed to minimized requirements creep
- A handful of critical new requirements and fact-of-life changes were incorporated, but “creep” was controlled
Demonstration Phase Results

- Competition provided increased capability at lower cost
- Government input (both user and acquirer) improved Contractor’s:
 - Understanding of requirements
 - Final design
 - Operations and sustainment concepts
- Legacy transition schedule refined
- Key system capabilities validated
 - Technical risk baseline updated
- Strong government/contractor IPT involvement
 - AFSPC users/staff were integrated into all aspects of program development
 - Foundation for continued participation in Development Phase
Program Risk Mitigation

Probability of Occurrence

Post Demo/Pre-CFI

Prior to Demo Phase

Development Phase Start

Impact

Low Med High

Global Network – Global Power
Lessons Learned

- Ensure balance of competition & fairness in downselect process
- Extend competitive phase timeline
 - Requirements refinement
 - Development of preliminary designs
- Increase support from legacy satellite and ground system contractors
 - Explanation of operations plans and satellite constraints
 - Analysis of satellite databases
Integrated Product Development Organization

Program Management

System Engineering
- Requirements Analysis
- Test
- Risk Mitigation

System Development
- Telemetry & Commanding
- Orbit & Attitude
- Mission Planning
- Simulation
- Security

Operations/Logistics
- Operations Concepts
- Facility Activation
- Transition
- Training
- Support & Sustainment

Satellite-Specific Development
- Functional & Interface Requirements
- Memory Management
- Maneuver Planning

Global Network – Global Power
Development Approach

- High degree of operator involvement
 - Guaranteed availability of key personnel throughout transition period
- Operators integrated into IPTs
 - Explain current operational procedures and satellite constraints
- Refine development requirements
 - Satellite operations
 - HMI design
 - Documentation of procedures
Positive control of requirements change
- Approval hierarchy: Squadron-Wing-Headquarters
- Program Configuration Control Board
 - Review/approval of DOORS change proposals

Extensive IPT Coordination
- Issues worked at lowest level IPT
- Integration of issues at higher-level IPTs
Conclusions

- CCS-C acquisition strategy was a success
 - Competition resulted in greater capability at lower cost
- Operator involvement at all steps is an essential factor for system buy-in
 - Understanding how acquisition process affects outcome
 - Being flexible in requirements definition and change
 - Actively supporting system development and transition
Backup Charts
Risk Baseline

<table>
<thead>
<tr>
<th>Probability of Occurrence</th>
<th>Impact</th>
<th>T9</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>T12</th>
<th>T10</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T8</th>
<th>T18</th>
<th>T7</th>
<th>T5</th>
<th>T20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>S1</td>
<td>T6</td>
<td>T8</td>
<td>T18</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **T1** - Milstar MUS Functions/Core Interfaces
- **T2** - Correct Vehicle Modeling
- **T3** - Legacy SV Telemetry Databases
- **T4** - Incorrect SV Command Data
- **T5** - Orbit Accuracy
- **T6** - Attitude Sensors
- **T7** - SV Simulation
- **T8** - Expandable System Architecture
- **T9** - COTS Management
- **T10** - DII/COE Compliance
- **T11** - Scheduler Modifications
- **T12** - Engineering Analysis Capability
- **T13** - AFSCN Ground Simulation
- **T14** - Integrated System Monitoring
- **T15** - Satellite Support Plans
- **T16** - External Interfaces with MUE
- **T18** - AFSCN RGF Interface
- **T20** - Operational Validation
- **T21** - Interfacing with SV Developers/Legacy System Contractors

- **S1** - Meeting Test Objectives
- **C1** – New Satellite Requirements
- **C2** - Core Cost Overrun
- **C3** - Budget Cut Impacts
System Architecture

Global Network – Global Power

Key:
- COTS
- New
- Reuse/NDI

T&C
- OPS Mon & Control
- Crew Support
- Procedure Builder
- T&C Server Utilities
- T&C Client Utilities
- T&C Processing
- T&C Database
- Schedule Exec. Server
- Schedule Exec. Viewer
- Procedure Auto. Server
- Procedure Auto. Client
- FEP

MPS
- Schedule Generation
- Resource Config. Mgmt
- DB Initialization Util.
- MPS Database
- AFSCN Interface
- OAA Interface
- T&C Interface

OAA
- OAA Batch/Core
- OAA Utilities
- OAA GUI/Core
- OAA External Interfaces

AT
- Archive
- Trending

SIM
- SV Simulator
- GS Simulator
- Simulation Executive
- Instructor User Interface
- Database Utility

DSCS MUS
- Ex. Data Conversion
- DB Ingest Script

AEHF MUS
- Ex. Data Conversion
- UEM Generator
- MIM
- DB Ingest Script

Milstar MUS
- Ex. Data Conversion
- UEM Generator
- MIM
- DB Ingest Script

NATO MUS
- Ex. Data Conversion
- DB Ingest Script

WGS MUS
- WGS MUS
- Ex. Data Conversion

Note: Color coding assignments reflect the majority of the code per component. An orange color code does not necessarily imply no new code will be developed.