A Common System for the Life of a Spacecraft

James E. Corrigan
Director of Software Development
Perspective

- Traditional satellite deployment methodologies have utilized multiple control systems
 - *Spacecraft sub-system test*
 - *Spacecraft system test*
 - *Launch and early orbit*
 - *In-Orbit test & evaluation*
 - *On-orbit control*

- Each control system generally utilizes a different set of database parameters
 - *Command definition*
 - *Telemetry definition*
 - *Alarm limits*

- Synchronization of the databases has proven to be difficult
 - *Costly manual management of database contents*
 - *Errors become increasingly expensive as the deployment process proceeds*
Future Directions

- Satellite manufacturers are recognizing the value of utilizing a single control system throughout the life of a spacecraft
 - Cost savings
 - Schedule reduction
 - Less on-orbit errors

- Use of a single control system requires process modifications
 - Development of a single requirement specification
 - Collection of requirements from several in-plant organizations
 - Coordination with existing and future customers
 - Investment in the development of a new system
 - Modifications to system maintenance approaches

- Implementation of a multi-purpose control system requires a commitment to on-going maintenance and evolution
 - Satellite advances will require the system to keep pace
 - General technological growth will force changes
 - The use of COTS systems eases maintenance concerns
System Attributes - Databases

• The database structure needs to be implemented as a result of a carefully considered system approach to information flow
 – A single source for any given piece of data
 – Database structure planned well in advance by a combination of spacecraft and software experts
 – Maintainability is a key consideration

• Support tools must be developed
 – Customer changeable parameters identified
 – Easy to use editor for modifiable parameters
 – The capability to deliver database delta files is necessary
 – Tools to check for proper use of data structure calls must be developed

• The database must be able to dictate the operational use of the system and contain trigger parameters to control functions
System Attributes - Interfaces

• The system requires a modular design to manage data interfaces with multiple external processes
 – *Varied hardware*
 • Test equipment
 • Operational baseband equipment
 • Antennas
 – *Flight dynamics software*
 – *Analysis software*

• The addition of new interfaces cannot be expensive

• The internal data management approach must be source independent
Lessons Learned

• The deployment of a multi-purpose control system requires very close interaction between the satellite manufacturing organization and the development group.

• Detailed requirement definition is critical prior to system design:
 – Spacecraft sub-system test engineers
 – Spacecraft system test engineers
 – In-house Mission Control Complex operators
 – External customers

• An open system design must be utilized:
 – Requirement changes
 – System evolution
 – Multiple external interfaces
Summary

• The use of several different systems to test, launch and fly a spacecraft is not efficient

• Implementation of a multi-purpose system requires a different development paradigm
 – Requirements collection
 – System design
 – System maintenance

• The use of open COTS products aids in the deployment of multi-purpose system control systems

• The use of a multi-purpose control system is in place today and is not just a future vision