Session 2 -- COTS and Legacy Software Integration Issues

GSAW
Dennis Smith, Chair
Rhoda Novak, Co-Chair
February 26, 1998
Basic Structure of Session

- **Objective:** identify major issues, current work and emerging solutions in COTS and legacy software integration issues

- **Approach:**
 - speakers develop basic themes
 - brainstorm primary issues
 - discuss one issue (cost) in more detail
Speakers Develop Basic Themes -

1. Jay Costenbader, TSI TelSys Inc
 - “An Open Reconfigurable Computing Approach to Space Data Communications Processing”

2. Michael Grier, Raytheon
 - “Methods and Technologies for a Reusable SGS Architecture”

3. Arthur McClinton, Mitretek
 - “NOAA POES Engineering Network Prototype Status”
Speakers Develop Basic Themes - 2

- Larry McQueary, Storm Control Systems
 - “The Selection of Middleware for Satellite Command and Control Systems”

- Bill Stratton, Integral Systems
 - “The NEAR Test and Mission Operations Ground System: Case Study in Rapid Development Using the EPOCH 2000 Spacecraft Command and Control Product”

- Paul Thoreson, L-3 Communications
 - “The Role of Scalable, Client/Server Technologies in Emerging Space Ground Systems”
Identification of Basic COTS and Legacy Integration Issues - 1

- Cost issues (Chris Abts’s USC model as a starting point)
- Ability to modify requirements to match COTS capabilities
 - A demo in the hand is worth a pound of requirements
 - Incremental prototypes erode requirements
 - Dynamic tension between acquisition requirements to use COTS and the best solution to be provided
 - Importance of understanding the limitations of current generation of COTS before mandating COTS
- COTS-unique HCI versus common operator interface standards
 - Reducing systems cost versus operator training costs
 - Operators are more computer literate
 - Balance HCI standard versus standard operator interface
Identification of Basic COTS and Legacy Integration Issues- 2

- Structure of the architecture and constraints
- Techniques for mining legacy assets
- Re-coding and re-hosting
- Long term maintenance
- Translators and emulators
- Middleware standards and products
- Product line issues
Identification of Basic COTS and Legacy Integration Issues - 3

- Maintenance of systems where you don’t own source
 - How does a single user get view into requirements and integrations created by others
- Lack of customer control over deliveries
- Language differences
- Vendor support for 10-20 year program life
 - Lack of sustained support for features in baselined COTS version
 - Tradeoffs for upgrading COTS baseline
 - Vendor viability
Identification of Basic COTS and Legacy Integration Issues - 4

• Approaches to minimize breakage when substituting COTS products
• Network issues
• Planning and management issues
 – Risk
 • Using COTS to reduce risk
 • Unintentional risk added by COTS shortfalls
• Dormant Code (COTS unspecified code)
 – included in package without requirements
 – Undesired side effects
Identification of Basic COTS and Legacy Integration Issues - 5

- The inability to predict systems behavior
 - Interactions among multiple COTS
 - e.g., with one stimuli, several COTS may be activated
- Resource contention issues with scalability
- COTS advertising versus prototype capability
- Verification and validation for COTS
 - Black box versus white box testing
- Version interdependency between COTS
- Tracking COTS state of the art
- Liability for COTS-related mission failure
COTS COST Discussion-1

• Every factor we discussed has cost impact
 – Consider using COTS within their limitations
 – Influence COTS vendors to handle
 • Verification and validation
 • Black box
 • Maintenance costs

• Government influence (and lack of) with vendors
• Need new cost models to handle COTS costs
 – Cost models should address cost factors that have variances and whether they are high, medium or low (Chris Abts’s USC model)
 • Volatility is a big cost driver
 • COTS vendors may need to be periodically replaced and should be included in the cost modeling
 • COTS license costs for multiple hosts impact life cycle costs
 • Value (Return on Investment) -- cost versus benefit
 • Give up control of development and maintenance (COTS) versus full control over custom code
 • Maintenance is a major proportion of total life cycle cost
 – 10 to 20 year life of systems versus 18 month software technology development cycle
COTS COST Discussion- 3

- Use COTS where it makes sense
 - Sufficient demand
 - Evaluate appropriate uses of COTS
- National systems have very high data rates
- Provide framework to allow COTS, custom and heritage components as required
 - how should acquisition authorities determine when to accept COTS with all its required and unused functionality
- Be sure you can live within the COTS capabilities (and lack of capabilities)
COTS COST Discussion- 4

• Product line potentials
 – If there is only ragged legacy code and no COTS for the domain, it may be better to build custom code for new product lines
 – Modern systems are rarely developed totally from scratch

• Reuse when practical

• Use demos to preview actual COTS capabilities
COTS COST Discussion- 5

- Is COTS volatility improving?
 - Market share impact of new features
 - Need easier to implement standards
- During system life it is sometimes not possible to replace one of the nodes of our systems (e.g. a satellite)
 - the node may outlive COTS
 - should we build cheaper, shorter-lived satellites