Space Mission
Communications Security

Nick Shave, Gavin Kenny
Logica UK Limited

Howard Weiss
SPARTA Inc

James Stanier
DERA
Presentation Overview

- Background and Security Issues
- Space Mission Security Requirements
- CCSDS Security Solutions
- The STRV Security Flight Protocol Experiment
- Encrypted CCSDS Space Experiment
Security Analysis of Satellite Command and Control Uplinks

By Brian Oblivion, L0pht Heavy Industries

“Many critical information paths flow over satellites orbiting our earth. A box floating in space seems to be a likely target for hacker groups or renegade nation-states…

There are two methods of compromising a satellite by an external threat vector. One is an attack directly on the Satellite by a rogue Ground Station. The second is an attack on the Master Ground Station…

Space mission protocol design information is available on NASA sites…”
Background

- Current space missions requiring security have bespoke solutions
 - Military space - many missions with many solutions
 - space station, NOAA/Eumetsat, some commercial missions
- SCPS-Security Protocol (SP)
 - first development to standardise security within space missions
 - STRV 1b Testing (1996), SCPS-SP included but limited in scope
- CCSDS link layer security
 - UK Defence Evaluation Research Agency programme
 - has evolved into ECSE payload on STRV 1d
- NASA & IRTF Inter-PlanNet (IPN) internet in space initiative
 - Security is key aspect of this work
Security issues

➢ Space missions need to protect
 » spacecraft and ground equipment
 » information and data contained within the systems
 » communications and data processing services

➢ Space mission security services are very important
 » especially as network interconnectivity increases…
 » ‘shouldn’t wait for a problem to happen’
 » must tailor to space mission application (wide spectrum)

➢ Security standardisation is good
 » enables interoperability and compatibility

➢ Various arguments for location of security in stack
 » application, network, data link/physical?
Generic Threats to Space Missions

- Space Debris
- Interception of Data (theft)
- Hardware Failure
- Software Threats
- Uplink Jamming
- Replay
- Unauthorised Access (Insider/Outsider)
Example Civil Space Mission Threats:

International Science Mission

<table>
<thead>
<tr>
<th>Applicable Threats</th>
<th>Impacts</th>
<th>Probability (1-5)</th>
<th>Security Mechanisms to Counter Threat</th>
</tr>
</thead>
</table>
| Unauthorised Access | • Disruption of operations
 • System damage
 • Potential loss of mission | 3 | • Authentication of commands
 • Access control in control centre
 • Access control in cross support network
 • No use of open networks |
| Interception of data | Loss of proprietary data | 1 | Encryption |
| Software threats | • Undesirable events
 • System damage | 1 | • Evaluation
 • COTS product use |
Security- services & mechanisms

» Data Confidentiality
 » implemented by encryption

» Authentication
 » can be implemented by adding a unique digital signature to the user data unit that cannot be created by an unauthorised entity

» Data Integrity
 » can be implemented by including an integrity check value with the data which is computed from the data itself

» Access Control
 » achieved via establishing user information bases with details of access rights and utilisation of other services (e.g. authentication)
 » needs effective password administration
 » Not supplied by basic IPsec or SCPS-SP
SCPS Security Protocol (SP) – End-to-end layer 3 security

From layer above (i.e. Transport)

SCPS-SP Clear Header SCPS-SP Protected Header Transport Layer Header Application Data Integrity Check Value

Enciphered data structure

To lower layers (i.e. Network, Link and Physical)
CCSDS Security Solutions (2)

Data Link Security – Point-to-point ‘conventional’ Layer 2 packet TM/TC security
STRV 1d (DERA microsat, launched Nov 2000)

Security Demonstration Objectives

- Demonstrate integrated security in space mission data systems
 - establish Space VPN (SVPN)
 - develop space mission security confidence in **public domain**
 - show security options enable tailoring to mission application

- SCPS-SP and IPsec performance comparison
 - primarily efficiency comparison in flight environment
 - evaluate different system configurations
 - evaluate different security service options (e.g. AH, ESP,...)

- Demonstrate link security and network layer security interaction

- Contribute to ‘baseline security platform’ for other agencies and organisations to participate
STRV Security Protocol Demo - architecture options: End-end IPsec

Windriver IPsec Implementation

Algorithm: DES

COTS IPsec Implementation

End-to-end application association

TCP connection

End-to-end security association

EM or Spacecraft

S/C Application

UDP

TCP

IPsec

IP

Space L2

RF

User Ground Facility

Ground Application

TCP

UDP

IPsec

IP

VPN

Internet

Windriver IPsec Implementation

Algorithm: DES

COTS IPsec Implementation

Link Layer Security (ECSE)
STRV Security Protocol Demo - architecture options: Trusted gateway

Performance Analysis

EM or Spacecraft
- S/C Application
 - UDP
 - TP
- SCPS-SP
- SCPS-NP
- Space L2
- RF

Transport Gateway Facility
- SCPS-SP
- SCPS-NP
- Space L2
- RF
- UDP Rewrap
- IPsec
- IP
- WAN L2
- WAN L1

User Ground Facility
- Ground Application
 - TCP
 - UDP
 - TCP connection
 - IPsec
 - IP
 - WAN L2
 - WAN L1

Internet

End-to-end application association

Security association
STRV Security Protocol Demo - architecture options:
End-end SCPS-SP via trusted SCPS gateway

Transport Gateway Facility

- SCPS-TP <-> TCP Gateway
- UDP Rewrap

Performance Analysis

- End-to-end application association
- Security association
- TCP connection

User Ground Facility

- TCP
- UDP

EM or Spacecraft

- S/C Application
- SCPS-SP
- SCPS-NP
- Space L2
- RF

Ground Application

- SCPS-SP
- IP
- WAN L2
- WAN L1
The Encrypted CCSDS Space Experiment (ECSE) Objectives

- Aim of ECSE is to build on testing of the secure CCSDS protocols by providing a demonstration platform onboard STRV1d whilst satisfying requirements for the UK MOD.

- Objectives of ECSE are to demonstrate operation of:
 - ESA Packet Telecommand encrypt/decrypt, authentication, validation and anti-replay attack
 - ESA Packet Telemetry encrypt/decrypt functionality
 - Extraction of security management functions onboard the spacecraft and simplified processing of these security management functions

- First flight implementation the CCSDS Data Link Layer security solution
ECSE: Current Status

- ECSE has been developed by DERA and Astrium
- Functionality of ECSE demonstrated on ground testbed including encrypt/decrypt, authentication and validation
- Currently being flown onboard STRV1d
- Telemetry at 10kbit/s, telecommand at 1kbit/s
- Software is currently being modified to accept full encrypt/decrypt capabilities
- Additional aim is to implement SCPS protocols (including SCPS-SP) over the CCSDS link layer security system
DERA STRV Spacecraft Launched Nov 2000 (Ariane 5)

- After approx. 1 month, TC receiver anomaly on both spacecraft
 - Currently attempting to recover mission

Security Protocol Flight Demo currently limited to ground-based performance analysis using Logica/SPARTA SCPS reference implementations:

- Good ‘science’ still possible
- SCPS-SP and IPsec performance comparison
- Various security configurations and service options to be evaluated
- Different algorithms (MD5?)
- Plans to investigate key management aspects
- Link up to DERA Engineering Model STRV via Net (TBC)
Future Developments

- STRV ground-based Security Demo completed in May 2001
 - Future paper will be published
- New concepts and configurations for space mission security will be demonstrated
 - IPsec
 - SCPS-SP
 - End-to-end security (remote ground station to spacecraft)
 - Trusted SCPS Gateway
 - Key management aspects (TBC)
- Possibilities for future flight demonstration to be investigated
- CCSDS plans are developing to integrate security further with the space mission data system standardisation architecture