Commercialization of NASA’s Ground Network

Dan Heimerdinger, Ph.D.
Director, CSOC Commercialization and Sales
Lockheed Martin Space Operations
February 21, 2001
What is CSOC?

- **Consolidated Space Operations Contract**
 - Awarded to Lockheed Martin Space Operations Team in September 1997
 - Consolidates 17 contracts across 5 NASA centers
 - $3.4 B/10 years
 - Government cost savings estimate of $1.4 B
Past Commercialization Successes

- Fully commercial WAN outsource with savings in excess of $20M/y
 - New customer signed for use of available capacity
- Space Network (TDRSS) commercial customer - potential >$5M/year
 - Required regulatory licensing for commercial use of government-allocated spectrum
 - 18 month activity
Past GN Commercialization Successes

- Three Initiatives Commenced in 1999
 - Cost avoidance (RTS development and installation) to NASA in excess of $20 M
 - Triana - awarded to USN
 - NASA “operational readiness” to be certified prior to Triana mission
 - EOS Polar Ground Network (EPGN) - awarded to HTSI/Unlockx
 - NASA EPGN “operational readiness” certified - currently taking passes
 - EPGN Backup - awarded to Kongsberg/Lockheed Martin Space Data Services
 - NASA EPGN “operational readiness” certified - currently taking passes
Moving to the Future GN Architecture and Operations Concept

• GN Commercialization Lessons Learned:
 – Contracting and operational readiness very time consuming
 – Causes bottleneck for new mission support
 – NASA Policy Shift
 _ CSOC can market available capacity; however, NASA will not compete with commercial providers if available
 – Commercialization and operational readiness certification is driven dominantly by culture and less technical capabilities

• Result:
 – GN Commercialization Plan - Dec 1999
 _ Transition NASA assets to commercial sector
 – CSOC institutional organization to manage GN commercialization
 _ Operational readiness definitions and process being codified
 – Indefinite Delivery/Indefinite Quantity (ID/IQ) Concept Generated
 _ Rapid acquisition of capacity and vehicle to transition assets
ID/IQ Background

• Briefing to Industry held on May 16, 2000
• RFP Released in June 2000
 – 14 Respondents
 – 7 Qualified TT&C providers
 – Next open enrollment planned for January 2002
• Ground Network Program Initiated in August 2000
 – Approved for implementation by NASA
Potential for NASA

- Current NASA Annual GN Costs (inside and outside of CSOC) - approx $30M
- Estimated Annual Costs after Full Commercialization - approx $16M
• ID/IQ is a Flexible Contractual Mechanism Between CSOC and Commercial Providers
 – NASA and other government customers receive discounted services based on volume of purchases (NASA, other federal agencies, international, or commercial)
 – Rapid Acquisition of Data Service Support
 _ LEO, suborbital, STS support, labor, MUE
 – Multiple Providers for Risk Management
 _ Service acquisition through rapid task orders
 _ Ability to “load” level across providers
 – Fosters a competitive pricing environment
 – Vehicle to transition assets (GFE process)
 _ Companies take over total cost of ownership
 _ Recoup costs through price per pass/minute schema
Preferred Provider Classification

- Network Provider - Offers multi-site TT&C stations, operations and wide area networks
- Resource Provider - Offer single site station and operations, may not have end-to-end TT&C
- Engineering Service Provider - Offer niche engineering services, emergency services and contingency services
- Special Hardware and Software Provider - Offers MUE and special H/W, S/W
Preferred Providers

- **Network Providers**
 - DataLynx, Kongsberg/Lockheed Martin Space Data Services, Universal Space Network
 - Resource Providers
 - Johns Hopkins Applied Physics Lab, Satellite Applications Centre, University of Chile

- **Engineering Service Providers**
 - ai Solutions, RT Logic, Software Corporation of America, SpaceHab, TSI Telesys

- **Special Hardware and Software Provider**
 - AZ Tech, Austin Information Systems
CSOC Added Value

- Why not go directly to providers?
 - Time and procurement cost savings
 - CSOC is a federally competed contract vehicle
 - ID/IQs are competed contract vehicles
 - Access to multiple providers
 - Load management
 - Potential reduction in costs for operational readiness through use of provider systems under current operation
 - Potential reduced communications costs through existing WAN
 - Discounted pricing based on overall purchased capacity
 - Access to NASA assets either in current GN or as they become GFEd to preferred providers
CSOC Plans for Commercial Providers

- Full commercial services for LEO mission load excluding STS and Deep Space Network
 - Approximately 50 passes per day growing to approximately 75 by 02/03
 - Most are polar, some low inclination
- Also investigating potential for
 - Commercial replacement for MILA/PDL
 - Commercial architecture to replace McMurdo
 - Commercial augmentation of DSN 26 m network
- Attract new customers to commercial service providers (adds additional load to providers)
 - New missions already requesting pass/LEO support
 - Other federal, international, and commercial users
Architecture Issues

- Manage capacity to minimize cost/unit service and provide availability through fault tolerance
 - Optimize loading across a set of preferred provider RTSs
 - Minimize requirements for:
 - New site activation and readiness certification
 - Nonstandard services - minimize mission unique equipment and migrate to commercial standards and systems for communications, security, etc...
 - New communications services
 - Develop and manage to RMA performance
 - Minimize interfaces to maximize scheduling flexibility

- Interleave GN reqts with commercialized WAN capability
 - Use commercial communications protocols when possible
 - Develop inverse relationships for available capacity to reduce overall cost per unit service
Current Ongoing Activities

- Capacity analysis
- Mission/RTS compatibility analysis
- WAN loading assessment
- Task order development
- Operational readiness certification of other systems
- Development of RMA data for performance assessment and architecture management
- Implementation of Integrated Operational Architecture based on commercial standards and systems
Summary

• CSOC commercialization is depending on the success of these commercial TT&C providers
 – We are planning on allocating NASA’s entire GN load to these systems
 _ This should foster the development of a robust and competitive service industry

• CSOC is developing a commercial architecture to manage to customer requirements
 – Not just buying passes and WAN bandwidth--developing an integrated operational commercial architecture

• This is a pathfinder program that can provide lessons-learned to other stakeholders