Product Acquisition Case Study
JPL Deep Space Network Telemetry Processor

RT Logic!
Enabling Your Solutions

Sean J. Conway
1042 Elkton Drive
Colorado Springs, CO 80907
Phone: 719-598-2801
FAX: 719-598-2655
www.rtlogic.com
Aggressive TLP Project Delivery Schedule

<table>
<thead>
<tr>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 5</th>
<th>Month 6</th>
<th>Month 7</th>
<th>Month 8</th>
<th>Month 9</th>
</tr>
</thead>
</table>

- **Authorization to Proceed**
- **Software Simulator Chassis**
- **Development/Integration**
- **System Test**
- **TLP & Software**

• Firm-Fixed-Price Contract

• Deliverables:
 - One TLP Software Simulator – 2 Months After Receipt of Order (ARO)
 - Three Fully Functional and Tested TLPs
 - System Software
 - Complete Documentation
 - Level-of-Effort Engineering
 - 5 Year Warranty
 - Production Systems
Ambitious TLP Technical Objectives

- Support Downlink Viterbi Decoding, Reed Solomon Decoding, and Frame Synchronization for JPL’s Deep Space Missions From 2bps To 13.2 Symbols/Sec., 4-26.4 Mbps
- Capture Every Bit – Partial Frames, Uncorrected Data
- Support External MCD III & Turbo Decoder Interfaces
- Interface With JPL’s Legacy Real Time Software For Data Processing
- Maximize Use of COTS Hardware and Software
- Provide an Open Architecture Platform With A View Towards System Extension/Expansion
TLP Solution Leverages COTS/Open Software

• RT Logic Telemetrix™ 505 Hardware Platform
 – 12-Slot Modified COTS VME Chassis
 – Motorola PowerPC Master CPU
 – Radstone PowerPC CPU Hosts Legacy JPL Software
 – Avtec Systems 7001 Viterbi Decoder (New Development)
 – Avtec Systems 6130J PMC Reed Solomon Decoder (Modified COTS)

• RT Logic Telemetrix™ Software Architecture Implementation
 – COTS VxWorks Real-Time Operating System
 – COTS RT Logic Device Drivers/API For Avtec Systems Hardware
 – COTS Clients and Servers for Control and Status
 – Driver Interface Used for Data Delivery
 – Simulators Provided For Each Device – Able to Run Without Final Hardware
Based on Existing Telemetrix™ System Architecture

- Configured to User-Specific Needs
- Scalable HW/SW (8+ Streams/Chassis)
- Client Interface/WNT GUIs
Open Software Architecture Promotes Integration

TLP Software Interface

RT Logic
Telemetrix™ Software
Software Architecture is Modular and Layered

- Driver Layer Has A Common API To Higher Level Application Tasks (Open, Close, Read, Write, IOCTL)
 - Utilizes Real Time I/O (RTIO) Library Product
 - All Drivers Have Identical API
- Device Wrapper Layer Encapsulates Hardware Device Specifics Within a Class
 - Provides Identical API As Client: Very Useful for Simulation
 - Allows Hardware Independence
 - Lowers System Life-cycle Cost – H/W Upgrades are Transparent to Application S/W
- Device Server Layer Utilizes Real Time Server Library (RTSL) to Implement Network Interface
- Device Clients Provide C++ Method Calls For Each Controllable Parameter
 - Utilize ACE Platform-Independent Libraries To Support Unix/Linux, Windows, VxWorks
 - C++ Interface to Most Customer Applications – Far Easier/More Reliable Than An ICD!
- GUIs For Windows
JPL Telemetry Processor Benefits

• Software Simulators for the ‘Front-End’ Hardware
 – Minimized System Integration Time – Facilitated JPL S/W Development
 – Reduced Software Engineering Support

• Device Wrapper Encapsulation of Device-Specific Attributes
 – Provides Hardware Vendor Independence
 – Lowers Life-cycle Costs

• Layers Allow Interfacing at Multiple Points – Driver, Real-Time Application, Network Application

• Open Architecture Minimizes Legacy Software & Hardware Interface Issues

• Use of COTS Hardware and Software
 – Leverages Large Investment Base

• Comprehensive Testing
Other Programs Have Benefited From The Telemetrix Architecture

• GPS Station Computer System Replacement (SCSR)
 – Telemetry, Commanding, SGLS Ranging and AFSCN Interface Systems
 – Straightforward KG Migration (KIT-123/KGR-28A to KI-17)
 – Common Hardware and Software Interface
 – Interface To OS/COMET Ground Station Software

• SBIRS High Ground Sites and Mobile Terminals
 – Telemetry Acquisition, Commanding, KG Interface, AFSCN Interface Systems
 – Interface to SCS-21 Ground Station Software

• RCDC Quick Reaction Demonstrator (QRD)
 – Telemetry Acquisition, Commanding, SGLS Ranging

• DSCS Replacement Satellite Command and Control Element (RSCCE)
 – Telemetry, Commanding, KG Interface
 – Interface to Legacy VAX Software
The Next Step – Real Time Programmable Hardware

- Field Programmable Logic Allows One Hardware Module to Take On Multiple ‘Personalities’ Depending Upon The Mission
 - Firmware Can Be Downloaded At Run-Time or On The Fly – Much Like Software
 - VHDL – C++ For Firmware Developers
 - Firmware ‘Objects’ – Building Blocks for Firmware Personality

- Reduces O&M Training Costs
 - Multiple System Functions Provided By Common Hardware Device

- Reduces Sustainment Costs
 - Common/Fewer Spares
 - Firmware Upgrades to Support New Hardware Functions

- Front-End Function Processor (RTL-FFP)
 - Dual Frame Synchronizer - Dual PCM Simulator
 - Command Formatter - KG Controller
 - AFSCN Interface - IRIG Time Processing

- Baseband Digital Processor (RTL-KEYPMC)
 - PSK Demodulation - Bit Synchronization
 - Frame Synchronization - FM Discrimination
 - SGLS Demodulation
Summary

- JPL TLP Project was Successful COTS-Based Development
- Open, Layered, Modular Software Architecture Maximized COTS Software Reuse and Allowed Custom Real Time Software Development
- Open Hardware Architecture Supported Legacy Hardware
- Software Simulators Allowed Concurrent RT Logic and JPL Development
- Vendor/Customer Interfaces Communicated Openly
- TLP Implementation Supports Future Upgrade
- Delivered Within Cost/Schedule