System-of-Systems (SoS) Processes

Jo Ann Lane
jolane@usc.edu
University of Southern California
Center for Software Engineering
Outline

• What is a System-of-Systems?
• Key activities and issues at the SoS level
• Impact of key activities and issues on traditional system and software development processes
• Observations on how system and software development processes are adapting to the SoS environment
What is a “system-of-systems”?

- Very-large systems developed by creating a framework or architecture to integrate
 - Existing systems
 - Systems currently under development
 - New systems to be developed
- SoS system components independently developed and managed
- Business Domain: enterprise-wide integration and sharing of core business information across functional and geographical areas
- Military Domain: dynamic communications infrastructure to support operations in a constantly changing, sometimes adversarial, environment
- SoS activities often planned and coordinated by a Lead System Integrator (LSI)

Future Combat System (FCS) SoS Example
Key SoS Activities and Issues

• LSI Activities
 – Concurrent SoS scoping, planning, requirements, architecting
 – Source selection
 – Teambuilding, re-architecting, feasibility assurance with selected suppliers
 – Incremental acquisition management
 • Development
 • Integration and test
 – Continuous change, risk, and opportunity management

• Issues
 – Number of stakeholders
 – Number of development organizations
 – Number of parallel, independent (or not so independent) developments
 – Impacts of non-SoS related system component changes
 – Length of decision chains
 – Cross-cutting risks vs. system component level risks
Impact of Key Activities and Issues on Traditional Processes

• Key LSI activities in the CMMI® Project Management process category
 – Project Planning
 – Project Monitoring and Control
 – Supplier Agreement Management
 – Integrated Project Management
 – Risk Management
 – Integrated Teaming
 – Quantitative Project Management

• Potential Impacts
 – Traditional planning and scheduling
 • May lead to unacceptably long schedules
 • Must integrate inputs from different organization processes
 – Traditional oversight spreads key personnel too thin
 – Need more emphasis on contracting
 • Incentives
 • Participatory change management
 – Standardization of all processes may be overwhelming
 – Decision making process
 • Involves considerably more organizations
 • Much more complex and time-consuming—may have significant impacts on overall schedule
 – Risk management for cross-cutting risks needs to cross organizational boundaries
Impact of Key Activities and Issues on Traditional Processes (continued)

• Key LSI activities in the CMMI® Engineering process category
 – Requirements Development
 – Requirements Management
 – Technical Solution
 – Product Integration
 – Verification
 – Validation

• Change in traditional engineering focus
 – Requirements: primarily at the SoS level and only address the system components with respect to their integration into the SoS framework/architecture
 – Know when not to system engineer
 – SoS technical solution, product integration, verification, and validation focuses primarily on the communications between the system components
 – Other system component technical solutions, integration, verification, and validation activities are the responsibility of the system component “owner”
 – LSI may or may not be responsible for actual development of system components for the SoS
Observations on How Processes Are Adapting to the SoS Environment

• Traditional planning and scheduling
 – **Plan activities as independent projects**
 • Requires that up-front SoS architecting be performed in sufficient detail to allow sub-projects to be somewhat independent of each other
 • Requires that risk-driven processes be used to identify and manage risks early at SoS and sub-project levels
 – Life Cycle Objectives (LCO) Reviews
 – Life Cycle Architecture (LCA) reviews
 – Feasibility Rationale (FR) studies
 – **Blend traditional processes with more agile processes**
 • Plan for stabilized evolutionary increments
 • Concurrently have agile change/risk/opportunity team
 – Performs acquisition intelligence/surveillance/reconnaissance functions
 – Rebaselines future increment solutions
 – **Competing priorities: use stakeholders to negotiate priorities with other on-going system component enhancements and maintenance**
Observations on How Processes Are Adapting to the SoS Environment (continued)

- Project monitoring and control
 - Minimize impacts on key personnel
 - Prioritize oversight areas

- Integrated project management
 - Identify key cross-cutting processes for standardization
 - Allow flexibility in other areas
 - Let organizations to use their own proven processes
 - Supplier organizations have been selected by the independent system component “owner” for their technical expertise and ability to produce

- Decision making process
 - Need to reduce to the extent possible
 - Length of decision chain: number of required SoS-level decisions
 - Number of clearances required for each decision
 - Studies indicate that the probability of success decreases as the number of required decision clearances increases
Observations on How Processes Are Adapting to the SoS Environment (continued)

• Risk management
 – Cross-cutting risks need to be managed and balanced across system and organizational boundaries
 – Each risk needs a responsible “owner”
 – Risk portfolios and “owners” to manage cross-cutting risks

• Integrated product teams typically play a much larger role and have more responsibilities

• The people processes are at least as important as the technical processes
 – Personal, organizational, and political motivations and priorities can impact the success of the project
Keys for Success

- Plan for
 - Risk-driven spiral processes and organizations
 - Stabilized evolutionary builds
- Rethink supplier management
- Know when not to system engineer
- Streamline SoS-level processes to take advantage of suppliers’ own processes
 - Fewer steps
 - Fewer decisions
- Not too fast—beware of speed problems
- Base program on performance, not promises—tie to LCA simulations and models to reduce risk
- Have appropriate infrastructure in place
 - Services and capabilities required to support development
 - Examples: appropriate labs, development processes, standards and the right technical talents/experts/staff
- New SoS program must fit into arrangements that have been made with other purposes in mind (although this will increase the number of required clearance points)