Teaching the Elephant to Dance: Agility Meets Systems of Systems Engineering and Acquisition

USC-CSE Agile Workshop 2005
March 14, 2005
Outline

- Nature of systems of systems engineering and acquisition
 - Particularly, network-centric systems of systems (NCSOS)
 - Acquisition is more like doing C4ISR than buying fruitcake
- Agile methods and NCSOS: strengths and difficulties
 - Helpful, but not a silver bullet
- Integrating agile and plan-driven methods
 - Workshop results and integration framework
- Critical success factors
 - Evolutionary, risk-driven spiral framework and plan-driven builds
 - Compatible acquisition and contracting methods and skills
 - Knowing when not to system engineer
- Conclusions, references
The Need for NetCentric Systems of Systems (NC SOS)

- Lack of integration among stovepiped systems causes
 - Unacceptable delays in service
 - Uncoordinated and conflicting plans
 - Ineffective or dangerous decisions

- NC SOS can strongly boost performance of
 - National Defense
 - Supply Chain Management
 - National Air Traffic Control
 - Crisis Management
System Acquisition Trends

Traditional Acquisition
- Standalone systems
- Stable requirements
- Rqts. determine capabilities
- Control over evolution
- Enough time to keep stable
- Failures locally critical
- Reductionist systems
- Repeatability-oriented process, maturity models

Current/Future Trends
- Everything connected (maybe)
- Rapid requirements change
- COTS capabilities determine rqts.
- No control over COTS evolution
- Ever-decreasing cycle times
- Failures globally critical
- Complex, adaptive, emergent systems of systems
- Adaptive process models
NCSOS Acquisition is More Like Doing C4ISR than buying fruitcake

- No detailed plan survives the first engagement
- Acquisition C4ISR via spiral OODA loops
 - Observe, Orient, Decide, Act
 - Vs. Requirements, Delay, Surprise
- Concurrent tasking, collaboration technology essential
 - Spanning deep chains of command
 - Customer, LSI, IPTs (C4ISR), Decision Support, COP Refresh, Sensor Fusion, Sensors, Sensor components
- Common strategy essential; microplanning risky
- Competition, technology, marketplace ISR essential
- Rapid adaptability essential
Acquisition C4ISR Via Spiral OODA Loops
- Example: ARPANet/Internet Spiral

Observe new/updated objectives, constraints, alternatives
- Usage monitoring
- Competition, technology, marketplace ISR

Orient with respect to stakeholders priorities, feasibility, risks
- Risk/Opportunity analysis
- Business case/mission analysis
- Prototypes, models, simulations

Operate as current system

Accept new system

Act on plans, specifications
- Keep development stabilized
- Change impact analysis, preparation for next cycle (mini-OODA loop)

Decide on next-cycle capabilities, architecture upgrades, plans
- Stable specifications, COTS upgrades
- Development, integration, V&V, risk management plans
- Feasibility rationale

Life Cycle Architecture Milestone for Cycle
NC S O S Acquisition Practice Implications

- Need to stimulate agility during Observe, Orient, Decide sectors
 - With flexibility-oriented contract, award fee provisions

- Need to stimulate stability during Act sector
 - Current stability-oriented contract provisions a good match

- Risk-driven spiral process generator accommodates both

- Waterfall and V-models have their risk-driven place
 - Acquiring preceded systems in stable marketplace
 - Executing stable Act sector
Outline

• Nature of systems of systems engineering and acquisition
 – Particularly, network-centric systems of systems (NCSOS)
 – Acquisition is more like doing C4ISR than buying fruitcake

→ Agile methods and NCSOS: strengths and difficulties
 – Helpful, but not a silver bullet

• Integrating agile and plan-driven methods
 – Workshop results and integration framework

• Critical success factors
 – Evolutionary, risk-driven spiral framework and plan-driven builds
 – Compatible acquisition and contracting methods and skills
 – Knowing when not to system engineer

• Conclusions, references
The Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

- **Individuals and interactions** over processes and tools
- **Working software** over comprehensive documentation
- **Customer collaboration** over contract negotiation
- **Responding to change** over following a plan

That is, while there is value in the items on the right, we value the items on the left more.
NCSOS-Relevant Agile Practices

- Short stabilized increments (+)
 - Prioritized feature backlog
- Continuous customer-developer participation (+)
- Early test; continuous integration (+)
- Tacit interpersonal vs. explicit documented knowledge (+)
- Welcome changing requirements (+)
- Simple design (-)
 - Just for current increment
 - Refactor to accommodate later capabilities
Agile and Plan-Driven Home Grounds: Five Critical Decision Factors

- Size, Criticality, Dynamism, Personnel, Culture
NC SOS Agile/Plan-Driven Profile

Personnel
(% Level 1B) (% Level 2&3)

Culture
(% thriving on chaos vs. order)

Dynamism
(% Requirements change/month)

Criticality
(Loss due to impact of defects)

Size
(# of personnel)

Essential Funds
Discretionary Funds
Comfort
Single Life
Many Lives

Criticality
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements change/month)

Personnel

Culture
(% thriving on chaos vs. order)

Size
(# of personnel)

Essential Funds
Discretionary Funds
Comfort
Single Life
Many Lives

Criticality
(Loss due to impact of defects)
Conclusions So Far

• Large global enterprises need NCSOS
• NCSOS acquisition is more like doing C4ISR
 - Acquisition C4ISR via spiral OODA loops
 - Need more adaptive vs. build-to-spec acquisition practices
• Key agile practices help, but scalability is difficult
• NCSOS acquisition needs to balance agility and discipline
 - Integrating agile and plan-driven methods
Outline

• Nature of systems of systems engineering and acquisition
 – Particularly, network-centric systems of systems (NCSOS)
 – Acquisition is more like doing C4ISR than buying fruitcake

• Agile methods and NCSOS: strengths and difficulties
 – Helpful, but not a silver bullet

 Integrating agile and plan-driven methods
 – Workshop results and integration framework

• Critical success factors
 – Evolutionary, risk-driven spiral framework and plan-driven builds
 – Compatible acquisition and contracting methods and skills
 – Knowing when not to system engineer

• Conclusions, references
• Large companies having success with small agile pilot projects
 - ABB, Daimler Chrysler, IBM, LMCO, Motorola, Northrop Grumman, Raytheon, SAIC
 - Generally higher productivity, customer satisfaction, morale

• Some perceived agile problems were non-issues
 - Agile is monolithic, disorganized
 - No framework for quantitative management, quality assurance

• Some perceived agile problems were real issues
Large-Company Agile Assimilation Issues

- **Scalability of agile methods**
 - Tacit knowledge (propagation; personnel turnover; 5,000 requirements)
 - Multi-team coordination

- **Avoiding agile stovepipes**
 - Limitations on freedom of choice
 - COTS, interfaces, GUIs, legacy systems

- **Traditional business practices**
 - Contracting; earned value systems; timekeeping; waterfall/V-model standard, HR practices

- **Inflexible maturity model interpretations**

- **Customer collocation, access**

- **Architecture suboptimization on early increments**
 - Example: key performance parameters

- **Predictable vs. unpredictable change**
Spiral Integration of Agile and Plan-Driven Processes

Driven By:

Success-critical stakeholders’ win conditions

1a. Identify Success-Critical Stakeholders

1b. Stakeholders Identify System Objectives, Constraints & Priorities (OC&Ps); Alternative Solution Elements

2a. Evaluate Alternatives with respect to OC&Ps

2b. Assess, Address Risks

3. Elaborate Product and Process Definition

4. Verify and Validate Product and Process Definitions

Stakeholders’ Review

Commitment

Progress Through Steps

Risk Management

Spiral anchor point milestones

Feasibility Rationale

Drum

Build

Build

Build

LCA

LCO

Driven By: Success-critical stakeholders’ win conditions

1a. Identify Success-Critical Stakeholders

1b. Stakeholders Identify System Objectives, Constraints & Priorities (OC&Ps); Alternative Solution Elements

2a. Evaluate Alternatives with respect to OC&Ps

2b. Assess, Address Risks

3. Elaborate Product and Process Definition

4. Verify and Validate Product and Process Definitions

Stakeholders’ Review

Commitment

Progress Through Steps

Risk Management

Spiral anchor point milestones

Feasibility Rationale

Drum

Build

Build

Build

LCA

LCO
Spiral Anchor Points Enable Concurrent Engineering
Need Concurrently Engineered Milestone Reviews

Life Cycle Objectives (LCO); Life Cycle Architecture Package (LCA)

| Operational Concept | • Elaboration of system objectives and scope by increment
| | • Elaboration of operational concept by increment
| System Prototype(s) | • Exercise range of usage scenarios
| | • Resolve major outstanding risks
| System Requirements | • Elaboration of functions, interfaces, quality attributes, and prototypes by increment
| | - Identification of TBD’s (to be determined items)
| | • Stakeholders’ concurrence on their priority concerns
| System and Software Architecture | • Choice of architecture and elaboration by increment
| | - Physical and logical components, connectors, configurations, constraints
| | - COTS, reuse choices
| | - Domain architecture and architectural style choices
| | • Architecture evolution parameters

3/3/2005
© USC - CSE
Need Concurrently Engineered Milestone Reviews

Life Cycle Objectives (LCO); Life Cycle Architecture Package (LCA)

| **Life-Cycle Plan** | • Elaboration of WWWWWhH* for Initial Operational Capability (IOC)
| | • Partial elaboration, identification of key TBD’s for later increments |

| **Feasibility Rationale** | • Assurance of consistency among elements above
| | • All major risks resolved or covered by risk management plan. |

LCO (MS A) and LCA (MS B) Pass/Fail Criteria

- A system built to the given architecture will
 - Support the operational concept
 - Satisfy the requirements
 - Be faithful to the prototype(s)
 - Be buildable within the budgets and schedules in the plan
 - Show a viable business case
 - Establish key stakeholders’ commitment to proceed

LCO: True for at least one architecture
LCA: True for the specific life cycle architecture;
 All major risks resolved or covered by a risk management plan
Using Risk to Balance Discipline and Agility - Overview

Step 1. Risk Analysis
Rate the project's environmental, agility-oriented and plan-driven risks.

Uncertain about ratings?
Yes
Buy information via prototyping, data collection and analysis

No

Step 2. Risk Comparison
Compare the agile and Plan-driven risks

Agility risks dominate
Go Risk-based Agile

Plan-driven risks dominate
Go Risk-based Plan-driven

Neither dominate

Step 3. Architecture Analysis
Architect application to encapsulate agile parts

Go Risk-based Agile in agile parts; Go Risk-based Plan-driven elsewhere

Step 5. Execute and Monitor
Deliver incremental capabilities according to strategy

Monitor progress and risks/opportunities, readjust balance and process as appropriate

Tailor life cycle process around risk patterns and anchor point commitment milestones

Step 4. Tailor Life Cycle

Note: Feedback loops present, but omitted for simplicity.
NCSOS Agile/Plan-Driven Strategy
- CRACK: collaborative, representative, authorized, committed, knowledgeable

Startup
- Stakeholders: Furnish CRACK representatives and alternates
- Project Leadership, Risk Management Teams:
 - Staff and organize to cover major risk areas

Teambuilding
- Develop shared vision
- Negotiate top-level system objectives, architecture, plans, feasibility rationales

Systems Architecting
- Prepare for/select developers
- Formulate/negotiate definitive requirements, architecture, plans, feasibility rationales
- Encapsulate agile portions
- Develop compatible architectures, plans, feasibility rationales

Development
- Ensure representative exercise of incremental capabilities
- Monitor, adapt to new developments
- Monitor and manage project progress, risk resolution, and new technology developments
- Continuously integrate/test growing software infrastructure and components
- Develop system components
Outline

• **Nature of systems of systems engineering and acquisition**
 - Particularly, network-centric systems of systems (NCSOS)
 - Acquisition is more like doing C4ISR than buying fruitcake

• **Agile methods and NCSOS: strengths and difficulties**
 - Helpful, but not a silver bullet

• **Integrating agile and plan-driven methods**
 - Workshop results and integration framework

Critical success factors
 - Evolutionary, risk-driven spiral framework and plan-driven builds
 - Compatible acquisition and contracting methods and skills
 - Knowing when not to system engineer

• **Conclusions, references**
NCOS Acquisition: Critical Success Factors

- Risk-driven spiral processes and organizations
 - Project manager’s risk/opportunity team
- Stabilized evolutionary builds
 - Concurrent plan-driven construction, agile rebaselining
 - Anchor point milestones and Feasibility Rationales
- Rethinking supplier management
 - Teambuilding and plans/architecture participation
 - Balanced agile/plan-driven contracts, award fees
- Knowing when not to system engineer
Agile Rebaselining Mini OODA Loop

- Many sources of next-build volatility
 - Supplier chain slippages, changes in current build
 - External interface volatility
 - COTS; interoperating systems
 - New threats, technology, policies
 - Organizational, top-management volatility

- Next build needs to hit the ground running

- Requires critical-mass budget, talent, tools for
 - Change impact analysis (observe, orient)
 - Solution rebaselining (decide, act)
 - Renegotiating future builds' content, associated plans and resources
 - Integrated COTS refresh preparation
DoDI 5000.2 “Spiral Development”
Section 3.3.2.1

- Desired capability is identified
 - End-state requirements not initially known
- Requirements refined through demonstration and risk management
 - Continuous user feedback
 - Each increment provides user the best possible capability
- Requirements for future increments depend on feedback from users and technology maturation

NB: This section of 5000 is under revision and all reference to spiral may be removed
Knowing When Not to System Engineer - A multi-platform NC SOS example

- Customer system-enginereers an optimized product line architecture for platform functions
 - Estimates cost savings from reuse
- Customer solicits best-of-breed platform suppliers
 - Contracts with most cost-effective bidders
- Customer discovers that supplier bids are based on product line - incompatible components
 - Too expensive to refit to product line architecture
- Better to risk-manage degree of product line achievability
 - Involve potential suppliers in product line option exploration
Conclusions

• Large global enterprises need NCSOS
• Agile approaches useful for NCSOS acquisition
 – NCSOS acquisition is more like doing C4ISR
• Critical success factors include
 – Reinterpreting agile methods in large-scale context
 – Encapsulating portions for agile development
 – Risk-driven spiral processes and organizations
 • Project manager’s risk management team
 – Concurrent plan-driven builds, agile rebaselining
 • And associated budgets, talent, tools
 – Rethinking supplier management
 • Balanced agile/plan-driven contracts, award fees
 • Teambuilding and plans/architecture participation
 • Knowing when not to system engineer
References

MBASE web site: sunset.usc.edu/research/MBASE

Agile workshops web site: www.cse.usc.edu/events/2004/arr

CrossTalk articles: www.stsc.hill.af.mil/crosstalk
The Cost of Hasty Fixed Requirements: 15-Month Architecture Rework Delay

- **Original Architecture:** Modified Client-Server
- **Required Architecture:** Custom; many cache processors

Graph Details:
- **Y-axis:** $100M, $50M
- **X-axis:** 1, 2, 3, 4, 5

- **Response Time (sec):**
- **Original Spec:**
- **After Prototyping:**

Legend:
- **Original Cost**

Note: 15-Month Architecture Rework Delay
KPP Validation with Spiral Model

• Attempt to validate 1-second KPP
 – Architecture analysis: needs expensive custom solution
 – Prototype: 4-seconds OK 90% of the time

• Negotiate KPP ranges
 – 2 seconds desirable
 – 4 seconds acceptable with some 2-second special cases

• Benchmark client-server to validate feasibility

• Present solution and feasibility rationale at anchor point milestone review
 – Result: Acceptable solution with minimal delay
Key Points

- It’s not a requirement if you can’t afford it
 - Or fit it into your schedule
- Spiral approach avoids late rework
- Beware of sub-optimization on small-scale early iterations