Critical Mass: Estimating software size from use case points and requirements repositories

Lee Fischman
Galorath, Incorporated
and
Dan Ferens
Air Force Research Laboratory
18th COCOMO/SCM Forum
University of Southern California
October 21, 2003
Presentation Outline

• Project Overview
• Critical Mass Estimating Objectives
 – Use Cases
 – Requirements Repositories
• Program Progress
• The Future
Project Overview

- Project awarded to Galorath Incorporated in June 2002 to develop a line of tools for automatically estimating software size from development documents
 - Awarded by the U.S. Air Force as part of the Small Business Innovation Research (SBIR) program
 - Phase 2 award following a successful Phase 1
 - Two-year project, approximately $750,000
 - End product: standalone tools interfacing with industry-leading specification and requirements development tools (Rational Rose, Telelogic DOORS)
- Requires development of two closely related tools, along with data collection and estimating method enhancement
 - Unified Modeling Language (UML) diagrams
 - Structured lists of requirements
History of Software Sizing

• Pre 1986 Primitive Methods (E.g. words of memory)

• Late 1980’s: SLOC and Function Points
 – Estimating methods available
 – Limitations to size artifacts (SLOC & Function Points)

• Late 1990’s: Object Counts
 – Several methods available, primarily based on use case points
 – Limitations to object counts: different definitions, limited application, design legacy (new, reused, etc.)

Bottom line.. Size still needs research
Therefore this SBIR
An Automated Sizing Toolset

From Software Design & Requirements Artifacts…

Use Case Models (UML) Structured Requirements Documents

Use With Productivity Metrics Reports Other Tools

…A Size Estimate Is Produced
CriticalMass Work Flow

Incoming Requirements or Object-Oriented Designs

Automatic Sizing

User Assists In Size Assessment

Learning From User Size Assessment

Database of Past Items

Size Estimate
Estimating Size Based On Use Cases

• Use Case: notional description of a system
 – Frequently used at the earliest stages in a project
• Use cases have three descriptive characteristics which can be exploited to provide sizing information:
 – Number of use cases
 • Use cases provide a high level description of the intended function of the system. A small application might have only one use case, while very large applications may have hundreds.
 – Number of “actors” per use case
 • Actors are the “agents” that interact with the software and so, use cases must have at least one actor. A commonly accepted standard is one actor per use case (more than one actor means that there must be more than one use case).
 – Number of scenarios
 • Potential outcomes of the software
 • No limit to number of scenarios in a use case
The Normalized Use Case (NUC)

• Challenge - A “standard” use case may be quantifiable using a given software metric, but none are standard.

• Theory – The components of a use case are interrelated, so the “sum of the whole” may equal more than the “sum of its parts”.

Whereas:

Use Case Points = \(\text{sum}(\text{Actors}) + \text{sum}(\text{Use Cases}) \)

for all use cases combined

Normalized Use Cases = \(\text{Actors} + \text{Relations} + (\text{Actors} \times \text{Relations}) + \ldots \)

for each use case

• A Normalized Use Case (NUC) counts and cross-multiplies all artifacts:
 – Actors
 – Unassociated Relations
 – Includes
 – Extends

By using many terms, the NUC may be robust to varying information.
UML Tool Flowchart

Accept Inputs From Rose

Ask User Questions

Calculate NUCs / UCPs

Accept User Comparisons For Lease-Best Estimates

Apply Adjustments

Translate to SLOC

Export to SEM
Sizing From Requirements Documents

Create Derived Metrics - DOORS

- Number of requirements linked to a WBS item
- Word count
- Information density (using compression algorithms)
- Source documents in modules
 - (Word, Excel, other)
- Document length
Dynamic Coefficient Determination

Methods For Calibrating the Sizing Algorithms

• Inputs are sized items with derived metrics: from a repository, from the existing project, or items sized by the user (via size by comparison)

• Methods being used:
 – Least Average Deviation
 – Least Squares Regression
 – Simulated Annealing

• Default coefficients will be used when insufficient data is available for calibration
Sizing Aids: Size By Comparison

Augments Automated Sizing

- Lets the user provide input about least understood items
- Entries are made via the user-friendly method of pair-wise comparisons
- Uses the proven Analytic Hierarchy Process (AHP) algorithm
The Road Ahead

CRITICAL MASS

- Rose and DOORS Tools Already Integrated With Respective Products
- Estimating Methods Being Integrated
- Beta Versions Ready by Q1 ‘04
- Project Completed by 1 April