An Intelligent Approach to Software Cost Prediction

Xishi Huang, Danny Ho1, Luiz F. Capretz, Jing Ren

Dept. of ECE, University of Western Ontario, London, Ontario, N6G 1H1, Canada
1Toronto Design Center, Motorola Canada Ltd., Markham, Ontario, L6G 1B3, Canada

{xhuang22, lcapretz, jren2}@uwo.ca, Danny.Ho@motorola.com

October 22, 2003
Agenda

- Problem
- The Novel Neuro-Fuzzy Model
- Validation by Industry Project Data
- Conclusion and Future Work
Software Cost Estimation

Motivation:
- Many software projects go over time and budget
- Software development has become an essential investment for many organizations

Problem Statement:
- We use project information such as software size and other attributes to predict software cost or effort

Characteristics of Software Cost Estimation:
- Complex nonlinear relationships between software development cost and cost drivers
- Imprecise and uncertain measurement
- Rapid change of software technology and processes
Agenda

- Problem
- A Novel Neuro-Fuzzy Model
- Validation by Industry Project Data
- Conclusion and Future Work
A Novel Neuro-Fuzzy COCOMO Model

COCOMOII MODEL

\[A \times (\text{Size})^{B + 0.01 \sum_{i=1}^{5} S_{Fi}} \times \prod_{i=1}^{17} E_{Mi} \]
COCOMO Model

- COCOMO II Post Architecture Model

\[
Effort = A \times (Size)^{B + 0.01 \times \sum_{i=1}^{5} SF_i} \times \prod_{i=1}^{17} EM_i
\]

where:
- effort is in staff-month (SM)
- A, B are constants
- Size is in KSLOC
- \(SF_i\)'s are scale factors
- \(EM_i\)'s are effort multipliers
Some Notations

<table>
<thead>
<tr>
<th>Fuzzy Sets</th>
<th>Rating Levels</th>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{i1}</td>
<td>1 Very Low (VL)</td>
<td>CD_{i1}</td>
</tr>
<tr>
<td>A_{i2}</td>
<td>2 Low (L)</td>
<td>CD_{i2}</td>
</tr>
<tr>
<td>A_{i3}</td>
<td>3 Nominal (N)</td>
<td>CD_{i3}</td>
</tr>
<tr>
<td>A_{i4}</td>
<td>4 High (H)</td>
<td>CD_{i4}</td>
</tr>
<tr>
<td>A_{i5}</td>
<td>5 Very High (VH)</td>
<td>CD_{i5}</td>
</tr>
<tr>
<td>A_{i6}</td>
<td>6 Extra High (XH)</td>
<td>CD_{i6}</td>
</tr>
</tbody>
</table>
Sub-Model NF_i

CDR_i: continuous rating value

CD_i: corresponding numerical value
Reasoning Phase: Fuzzy rules

- If CDR_i is $A_{i1}(VL)$, then $CD_i = CD_{i1}$,
- If CDR_i is $A_{i2}(L)$, then $CD_i = CD_{i2}$,
- If CDR_i is $A_{i3}(N)$, then $CD_i = CD_{i3}$,
- If CDR_i is $A_{i4}(H)$, then $CD_i = CD_{i4}$,
- If CDR_i is $A_{i5}(VH)$, then $CD_i = CD_{i5}$,
- If CDR_i is $A_{i6}(XH)$, then $CD_i = CD_{i6}$.

$(i,k), \ i=1,2,\ldots,22, \ k=1,2,\ldots,6$
Sub-Model NF_i (Cont’d)

- **Layer 1:**
 \[O^1_k = \mu_{ik} (x) \]

- **Layer 2:**
 \[w_k = \prod \mu_{ikj} (x) \]

- **Layer 3:**
 \[\overline{w}_k = \frac{w_k}{\sum w_j} \]

- **Layer 4:**
 \[O^4_k = \overline{w}_k CD_{ik} \]

- **Layer 5:**
 \[CD_i = \sum_k \overline{w}_k CD_{ik} \]
Interpretation of sub-model NF_i

Linear interpolation:

$\mu_{ik}(x) = \begin{cases}
 x - (k - 1), & k - 1 \leq x \leq k \\
 (k + 1) - x, & k \leq x \leq k + 1 \\
 0, & \text{otherwise}
\end{cases}$

$$CD_i = CD_{ik} + (CD_{ik+1} - CD_{ik})(CDR_i - k)$$

$k \leq CDR_i \leq k + 1, k = 1, 2, \ldots, 6$
Learning Algorithms

Optimization problem:

\[E = \sum_{n=1}^{NN} \frac{1}{2} w_n \left(\frac{E_n - E_{dn}}{E_{dn}} \right)^2 \]

subject to monotonic constraints:

\[CD_{i_1} \leq CD_{i_2} \leq CD_{i_3} \leq CD_{i_4} \leq CD_{i_5} \leq CD_{i_6}, i \in I_{INC} \(CD\) \]

\[CD_{i_1} \geq CD_{i_2} \geq CD_{i_3} \geq CD_{i_4} \geq CD_{i_5} \geq CD_{i_6}, i \in I_{DEC} \(CD\) \]

Learning Algorithm:

\[CD_{\frac{l+1}{ik}} = CD_{\frac{l}{ik}} - \alpha \frac{\partial E}{\partial \ CD_{\frac{l}{ik}}} \]
Advantage of Continuous Rating Values

Two similar projects P1 and P2 have the same nominal effort, say 100 staff-months.

The COCOMO II.2000 model,

- For P1, 203 staff-months
- For P2, 2886 staff-months!

The difference is over 14 times.

Our Model: 809 staff-months for both projects
Agenda

- Problem
- A Novel Neuro-Fuzzy Model
- Validation by Industry Project Data
- Conclusion and Future Work
Validation by Industry Project Data

Sources of Project Data

- Industrial project data: 6 projects
- COCOMO81 database: 63 projects
Validation Results

- Case I. Learning with all project data
- Case II. Learning with part of project data
- Case III. Use larger weights for local data
- Case IV. Learning without monotonic constraints
Effort estimation for all 69 project data points

<table>
<thead>
<tr>
<th>ARE</th>
<th>COCOMO81 Model</th>
<th>Neuro-Fuzzy Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>Case II</td>
<td>Case III</td>
</tr>
<tr>
<td>PERC</td>
<td>IMPRV</td>
<td>PERC</td>
</tr>
<tr>
<td>20%</td>
<td>71%</td>
<td>86%</td>
</tr>
<tr>
<td>30%</td>
<td>81%</td>
<td>92%</td>
</tr>
</tbody>
</table>
Effort estimation for industrial project data

<table>
<thead>
<tr>
<th>Project No</th>
<th>Actual Effort</th>
<th>COCOMO81 Model</th>
<th>Neuro-Fuzzy Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate</td>
<td>Error</td>
</tr>
<tr>
<td>P1</td>
<td>638.0</td>
<td>745.0</td>
<td>16%</td>
</tr>
<tr>
<td>P2</td>
<td>185.0</td>
<td>167.3</td>
<td>-9%</td>
</tr>
<tr>
<td>P3</td>
<td>332.0</td>
<td>322.0</td>
<td>-3%</td>
</tr>
<tr>
<td>P4</td>
<td>619.9</td>
<td>651.5</td>
<td>5%</td>
</tr>
<tr>
<td>P5</td>
<td>64.8</td>
<td>63.4</td>
<td>-2%</td>
</tr>
<tr>
<td>P6</td>
<td>76.6</td>
<td>72.2</td>
<td>-5%</td>
</tr>
</tbody>
</table>
Agenda

- Problem
- A Novel Neuro-Fuzzy Model
- Validation by Industry Project Data
- Conclusion and Future Work
Conclusion

- Propose a novel neuro-fuzzy COCOMO model
 - Neuro-fuzzy COCOMO structure
 - Monotonic constraints
 - Learning algorithm
 - Fuzzy rules
Conclusion (Cont’d)

Distinguishing Features of the Proposed Model:

- Learning ability
- Robust to imprecise and uncertain inputs
- Good Interpretability
- Knowledge integration
- Reduced number of learning parameters
- Good generalization
- Local learning
Future Work

Extending the neuro-fuzzy approach to

- Other cost estimation models, e.g. SLIM
- Quality estimation models, e.g. COQUALMO
References

THANKS!
Any Questions?