A Risk Centric Model for Value Maximization

Steven L. Cornford & Martin S. Feather
Jet Propulsion Laboratory
California Institute of Technology

Steven L. Cornford@Jpl.Nasa.Gov
Martin.S.Feather@Jpl.Nasa.Gov

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Funded by NASA’s:
Code Q FDPP program,
Code Q/IV&V ARRT task, and
Code R ECS program.

http://ddptool.jpl.nasa.gov
Motivation: Cornford’s flow-down image: assurance activities “filter out” risk

overfiltered risk unfiltered risk

MISSION FAILURE MODES

DESIGN RULES
MATERIALS SELECTION
ROBUST DESIGN

QML VENDORS
PROCESS CONTROLS

INSPECTIONS
VERIFICATIONS

RELIABILITY ANALYSES

SYSTEM TESTING
PERFORMANCE TESTING

MISSION SUCCESS?

ANALYSES

TECHNOLOGY
QUALIFICATION

LIFE TESTING
MISSION SIMULATION

ASSEMBLY TESTING
PERFORMANCE TESTING

MISSION FAILURE MODES

MISSION FAILURE MODES
DDP’s Risk Model - Overview

Objectives (what you want)

Risks (what can get in the way of objectives)

Mitigations (what can mitigate Risk - decrease likelihood/severity)

Impact (how much Objective loss is caused by a Risk)

Effectiveness (how much a Mitigation reduces a Risk)

Note: Objectives, Risks and Mitigations inclusive of all relevant concerns

In the past we have also referred to these as:
“Requirements”, “Failure Modes” and “PACTs” - Preventative measures (e.g. design rules, training), Analyses (e.g., software fault tree analyses (SFTAs)), process Controls (e.g. coding standards), Tests (e.g. unit tests, system tests, stress tests)
DDP Risk Model – Details

Objectives - have **weights** (their relative importance)

Risks - have **a-priori likelihoods** (how likely they are to happen if not inhibited by Mitigations), usually left at the default of 1 (certain!)

Mitigations - have **costs** ($, schedule, high fidelity test beds, memory, CPU, ...)

Impact (Objctv x Risk) - if Risk occurs, proportion of the Objective lost. Combine **additively** (n.b., objectives can be more than 100% killed!).

Effectiveness (Mtgn x Risk) - if this Mitigation applied, proportion of Risk reduction. Combine as serial filters: E1 & E2 = (1 - (1-E1)*(1-E2))

e.g., a 0.8 effectiveness Mitigation catches 80% of incoming Risk, a 0.3 effectiveness Mitigation catches 30% of incoming Risk; together have 86% effectiveness: 100% -> 20% -> 14%

\[(1 - (1 - 0.8)*(1 - 0.3)) = (1 - 0.2*0.7) = (1 - 0.14) = 0.86\]

Purpose of DDP is to judiciously decide which Mitigations to apply, to balance **cost** (of their application) and **risk** (loss of objectives of not applying them).
DDP Risk Model – the Statistician’s View

Impact of a given Risk on a particular Objective

- Sum the rows: how much each objective is “at risk”.
- Sum the columns: how much each Risk causes loss of Objectives.
- Transfer columns to 2nd matrix.

Effectiveness of a given Mitigation to detect, prevent or alleviate a particular Risk

- Sum the rows: how much each Mitigation reduces Risks; “solo” or delta”.
- Sum the columns: how much each Risk detracts from Objectives (1) when Mitigations off, (2) when Mitigations on.

DDP’s quantitative treatment allows Risk to be the interim concept that connects benefit (Objectives attainment) with cost (performing Mitigations).
DDP in Practice

Applied early in lifecycle, when lack detailed and/or well understood designs
- Maximal influence is when have minimal information
- Handle programmatic risk as well as technical risk

Must scale to large problems
- Spacecraft domain involves a multitude of challenges, many experts involved
- Pushing the envelope deployment of new technology, mixes old and new challenges

Typical numbers
- Objectives, Risks, Mitigations: 30-200 of each
- non-zero Impacts and Effects: approx. 1000 of each
- 10-20 *experts* involved in 3 half-day sessions

Objectives
- Optimize selection of Mitigations
- Push back on Objectives (trade for cost savings)
- Understand purpose of Mitigations (which Risks they reduce)
DDP Results

Initial reluctance / skepticism of value of process

Anecdotal evidence of success
- Final consensus on high value of process
- Homed in on genuine problems
- Identified superior solutions in resource challenged problems
- Provided defensible solutions

Recurring drawbacks of approach
- Combination rules require explanation
- Effort it takes to input the data
- Skepticism of validity of results, based as they are on simplistic model and multitude of estimates
- Data/Estimates particularly weak for software
DDP Risk Model – the Topologist’s View

Benefit = \sum \text{attainment of Objectives}

Cost = \sum \text{cost of Mitigations & Repairs}

Shallow but broad “influence diagram” (a.k.a. Bayesian)
Raw topological presentation of a DDP risk model

Objectives

Risks

DDP process and custom tool enables models of this scale to be built and used effectively without ever seeing the underlying topology

Mitigations
DDP Trees

Objectives / Risks / Mitigations

Contracted

Expanded

Selected

Deselected

Number: Title

Autonumbering: linear 1,2,… or tree 1, 1.1, 1.2, 1.2.1, …

Taxonomies are good for reminders, navigation & abstraction (DDP computes aggregate values)
DDP Matrices

Effects (Mitigation x Risk)

<table>
<thead>
<tr>
<th>PACTs</th>
<th>FM</th>
<th>Stabilit</th>
<th>Comple.</th>
<th>Clarity</th>
<th>Validity</th>
<th>Feasib</th>
<th>Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth.</td>
<td>7.95</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Identify</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maint.</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft.</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impl.</td>
<td>1.85</td>
<td>0.9</td>
<td>0.3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Manag.</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docum.</td>
<td>1.65</td>
<td>0.3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Peer.</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers supplied by experts and/or based on accumulated metrics.

Impacts (Objective x Risk) are similar:

proportion of Objective loss if Risk occurs

proportion of Risk reduced by Mitigation
DDP Visualizations - Bar Charts

Risks bar chart

Unsorted – order matches leaf elements in Risk tree

Item number in tree

Sorted – in decreasing order of remaining Risk

Green: of this Risk’s total Impact on Objectives, that saved by Mitigations

Red: of this Risk’s total Impact on Objectives, that remaining despite Mitigations

Objectives bar chart similar – how much each is impacted

Mitigations bar chart similar – how much impact each is saving
Risk Magnitude = Likelihood \times Impact (Severity)

User defines risk levels demarking red/yellow/green/(tiny) risk regions

Log/Log scale: diagonal boundaries = risk contour lines

Conventional measure of risk as impact (severity) \times likelihood.
DDP Visualizations – Stem-and-Leaf(\(^*)\) Charts

E.g., Risks & their Mitigations

Mitigations – turquoise width \(\cong\) effect

Risks – red width \(\cong\) log outstanding \(\Sigma\) impact

item number in Risk tree

Mitigation tree

\(^*)\) Tufte attributes these to John W. Tukey, “Some Graphical and Semigraphic Displays”
Their usage was introduced into RBP by D. Howard, extended further by us in DDP.

Compact visualization of DDP’s sparse matrices
Recent Refinements of Cost/Benefit Aspects

Mitigations grouped into phases (e.g., requirements, design, coding, ...)
- Match spending with budget profile
- Implies risk reduction by phase: compute risk reduction profile

Mitigation subtypes
- *preventions*: decrease likelihood of problem arising (e.g., training; coding conventions)
- *alleviations*: decrease severity of problem if it occurs (e.g., defensive programming)
- *detections*: imply need to repair problems so detected (e.g., testing; analysis)

Cost of repair separated from cost of detection
- repair costs typically escalate greatly over time
- reveals net savings of up-front effort

Mitigation induced & aggravated failures
- software bugfix introduces new bugs
- turning on/off array bound checking changes timing
Risk Reduction Profile

Plan A, slipped
Risk at launch low

Plan B, slipped
Risk at launch high

Plan A

Plan B

development time

Launch date

risk
Optimization

Typical model had 99 Mitigations, i.e., 2^{99} (approx 10^{30}) possible solutions (choices of Mitigations to perform).
Discrete choices (perform/not perform), so few traditional optimization methods apply
Bad enough with simple cost/benefit model - harder yet as model becomes more complex

Promising Solutions:
- **Genetic Algorithms** (a form of heuristic search): promising results on simple DDP cost/benefit model
- **Machine Learning based approach of Menzies**: pilot study results good
 method also identifies *critical* decision points
- **Simulated annealing**: fast convergence, simple to use;
 now packaged as part of DDP tool distribution
Optimization Using Menzies’ (*)
Machine Learning based approach

Requirements Interaction Model

Learning & Summarization Tool

examples

... iteractive cycle

human experts

DDP TAR2 (Menzies)

Retains expert involvement

critical decision selection

critical decision alternatives

1. P = Yes
2. Q = Yes
3. R = No

1. X = No
2. Y = Yes
3. Z = Yes

decisions of both what to do, and what to not do

*http://tim.menzies.com
Successful Study with Menzies’ technique on Real DDP Model

Figure 2. Initial (scattered black points) and Final (dense white points)

GOOD

BAD

achieved by constraining 33 of the 99 decisions

many ways to waste $
Simulated Annealing now part of DDP tool

Optimal solutions

low cost, high benefit

high cost, high benefit

using Simulated Annealing heuristic search
(“cools” red-orange-yellow-green-blue)

low cost, low benefit

high cost, low benefit
DDP Sensitivity Analysis

1) Menzies' technique showed optimal solution robust

2) Vary effect values one by one, recompute requirements attainment, tabulate results:

<table>
<thead>
<tr>
<th>Change</th>
<th>% Change</th>
<th>PACT</th>
<th>Failure Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.02</td>
<td>0.76</td>
<td>Select/make laser</td>
<td>Insufficient power</td>
</tr>
<tr>
<td>-0.834</td>
<td>0.314</td>
<td>CCD Qualification</td>
<td>CCD degradation</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.226</td>
<td>System Study</td>
<td>Other technologies are better</td>
</tr>
<tr>
<td>-0.329</td>
<td>0.124</td>
<td>Hermetic packaging</td>
<td>non-Hermetic</td>
</tr>
<tr>
<td>-0.246</td>
<td>0.0926</td>
<td>Fibre qualification</td>
<td>Fibre degradation</td>
</tr>
</tbody>
</table>

3) Use results for relative decision making, *not* as absolute measures of reliability. Having identified areas of critical concern, apply other techniques (e.g., probabilistic risk assessment).
Software Engineering Community

Starting Points

Risks: Software Risk Taxonomy (SEI)

Mitigations: two datasets:

1. CMM Key Practices (Infrastructure and Activities)
2. Software Quality Assurance activities from Ask Pete (NASA Glenn tool)

Effects: cross-linkings of the above

1. Expert’s best estimates of which help
2. Experts’ 1000+ best estimates of how much (quantified effectiveness) they help

Note: Objectives are PROJECT SPECIFIC

Seeking experience-based data (e.g., from CeBASE consortium)
For Further Information

http://ddptool.jpl.nasa.gov
Steven L. Cornford@Jpl.Nasa.Gov
Martin.S.Feather@Jpl.Nasa.Gov