Estimating Project Risk Reserves

Richard D. Stutzke
Science Applications International Corp.
6725 Odyssey Drive
Huntsville, AL 35806-3301
(256) 971-6224 (office)
(256) 971-6550 (facsimile)
(256) 971-7330 (asst)

Richard.D.Stutzke@saic.com

Topics

- Basic Concepts and Notation
- The Spreadsheet
- Deciding to Accept or Mitigate
- Deciding to Prevent or Track
Definitions

- Definitions
 Risk = an uncertain condition or event that, if it occurs, could have a negative effect on the project, the product, or the process
 Mitigation = actions taken to reduce the impact of a risk

- Example of mitigation
 - Redesign so hardware won’t fail
 - Multi-version programming
 - Contract Terms and Conditions (‘Not my fault!’)
 - Purchase insurance
Goals

- Choose an "optimal" reserve amount (money)
 - Too large ⇒ overpriced
 - Too small ⇒ inadequate resources

- Provide justification for the amount
 - Hard reserve versus soft reserve
 - Documented calculations

- Advice on planning
 - Preventative versus contingent
 - Schedule impacts
Notation

• Basic Quantities

\[P_B = \text{Probability of occurrence before mitigation} \]
\[C_B = \text{Cost of occurrence before mitigation} \]
\[P_A = \text{Probability of occurrence after mitigation} \]
\[C_A = \text{Cost of occurrence after mitigation} \]
\[C_M = \text{Cost of mitigation} \]

• Useful Quantities

\[I_i = \text{Impact} = P_i \cdot C_i \]
\[\text{RRL} = \text{Risk Reduction Leverage} = \frac{I_B - I_A}{C_M} \]
Handling Insurance

• Definitions:
 \[C_F = \text{Face Value} \]
 \[C_D = \text{Deductible amount} \]
 \[C_I = \text{Cost of policy} \]

• Calculations
 \[I_B = P_B \times C_B \]
 \[I_A = P_B \times [C_B - (C_F - C_D)] \]
 \[RRL = P_B \times (C_F - C_D)/C_I \]
Risk Analysis Spreadsheet*

<table>
<thead>
<tr>
<th>ID</th>
<th>Owner</th>
<th>Title</th>
<th>Prob.</th>
<th>Cost (K)</th>
<th>Impact (K)</th>
<th>Action</th>
<th>Cost (K)</th>
<th>Prob.</th>
<th>Cost (K)</th>
<th>Impact (K)</th>
<th>Impact Red.</th>
<th>RRL</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>0.4</td>
<td>45.0</td>
<td>18.0</td>
<td>A-1</td>
<td>10.0</td>
<td>0.05</td>
<td>10.0</td>
<td>0.5</td>
<td>17.5</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>C</td>
<td>0.5</td>
<td>75.0</td>
<td>37.5</td>
<td>B-1</td>
<td>75.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>37.5</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>D</td>
<td>0.3</td>
<td>25.0</td>
<td>7.5</td>
<td>C-1</td>
<td>2.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>7.5</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>E</td>
<td>0.2</td>
<td>100.0</td>
<td>15.0</td>
<td>D-1</td>
<td>15.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>F</td>
<td>1.0</td>
<td>150.0</td>
<td>150.0</td>
<td>E-1</td>
<td>5.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>150.0</td>
<td>30.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>G</td>
<td>0.3</td>
<td>375.0</td>
<td>112.5</td>
<td>F-1</td>
<td>100.0</td>
<td>0.15</td>
<td>200.0</td>
<td>30.0</td>
<td>82.5</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>H</td>
<td>0.1</td>
<td>1000.0</td>
<td>100.0</td>
<td>G-1</td>
<td>150.0</td>
<td>0.01</td>
<td>900.0</td>
<td>9.0</td>
<td>91.0</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>I</td>
<td>0.2</td>
<td>1125.0</td>
<td>225.0</td>
<td>H-1</td>
<td>90.0</td>
<td>0.05</td>
<td>100.0</td>
<td>5.0</td>
<td>220.0</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>I2</td>
<td>J</td>
<td>0.4</td>
<td>500.0</td>
<td>200.0</td>
<td>I-1</td>
<td>30.0</td>
<td>0.10</td>
<td>500.0</td>
<td>50.0</td>
<td>150.0</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>K</td>
<td>0.4</td>
<td>1500.0</td>
<td>600.0</td>
<td>J-1</td>
<td>100.0</td>
<td>0.15</td>
<td>500.0</td>
<td>75.0</td>
<td>525.0</td>
<td>5.25</td>
<td></td>
</tr>
</tbody>
</table>

*Based on concepts in [Hwang, 1973] and [Army, 1979].

© 2002 by Richard D. Stutzke

Est Proj Risk Res (27Sep02)
Regions of the Spreadsheet

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description</td>
<td>A-C</td>
</tr>
<tr>
<td>2. Before Mitigation</td>
<td>D-F</td>
</tr>
<tr>
<td>3. Mitigation Action</td>
<td>G-H</td>
</tr>
<tr>
<td>4. After Mitigation</td>
<td>I-K</td>
</tr>
<tr>
<td>5. Analysis</td>
<td>L-M</td>
</tr>
<tr>
<td>6. Notes</td>
<td>N</td>
</tr>
</tbody>
</table>
Overlapping Risks

• Coupling
 – Mitigating one risk increases the impact of another risk
 – “Buy instead of build” reduces new development risk, but increases COTS volatility risk

• Compounding
 – One occurrence affects several components or tasks
 – The new ICASE tool lacks needed features, and is “buggy”
 – Reference Section 2.5.2 in [Boehm, 1989]
Overlapping Mitigation Actions

• One mitigation action affects multiple risks
 – Example: A high maturity process mitigates risks associated with multiple process areas
 – The concern: allocating C_M to the risks so RRL_i is realistic

• Alternatives
 – Allocate C_M equally to the risks
 – Allocate C_M in proportion to $(I_B - I_A)$
Computing the Appropriate Reserve

• Approach
 – Mitigate only risks with RRL > 1
 – Rank order risks by decreasing RRL

• Definitions:

\[CMC = \text{Cumulative Mitigation Cost} = \sum_{RRL>1} C_M \]

\[PTC = \text{Predicted Total Cost} = \sum_{RRL>1} I_A + \sum_{RRL<1} I_B + \sum_{RRL>1} C_M \]
Sample Risk Analysis

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Before Mitigation</th>
<th>Mitigation</th>
<th>After Mitigation</th>
<th>Analysis</th>
<th>Rank</th>
<th>Cumul Impact</th>
<th>Impact Red.</th>
<th>RRL (RRL)</th>
<th>Mitig Remaining</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>E</td>
<td>1.0</td>
<td>150.0</td>
<td>150.0 E-1</td>
<td>5.0</td>
<td>0.00</td>
<td>0.0</td>
<td>150.0</td>
<td>30.00</td>
<td>1</td>
<td>150.0</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>0.4</td>
<td>1500.0</td>
<td>600 J-1</td>
<td>100.0</td>
<td>0.15</td>
<td>500.0</td>
<td>150.0</td>
<td>75</td>
<td>2</td>
<td>105.0</td>
</tr>
<tr>
<td>9</td>
<td>I2</td>
<td>0.4</td>
<td>500.0</td>
<td>200 I-1</td>
<td>30.0</td>
<td>0.10</td>
<td>500.0</td>
<td>150.0</td>
<td>50</td>
<td>3</td>
<td>135.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.3</td>
<td>25.0</td>
<td>7.5 C-1</td>
<td>2.0</td>
<td>0.00</td>
<td>0.0</td>
<td>7.5</td>
<td>3.75</td>
<td>4</td>
<td>137.0</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>0.2</td>
<td>1125.0</td>
<td>225.0 H-1</td>
<td>90.0</td>
<td>0.05</td>
<td>100.0</td>
<td>220.0</td>
<td>2.44</td>
<td>5</td>
<td>227.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.4</td>
<td>45.0</td>
<td>18.0 A-1</td>
<td>10.0</td>
<td>0.05</td>
<td>10.0</td>
<td>17.5</td>
<td>1.75</td>
<td>6</td>
<td>237.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0.2</td>
<td>100.0</td>
<td>15.0 D-1</td>
<td>15.0</td>
<td>0.00</td>
<td>0.0</td>
<td>15.0</td>
<td>1.00</td>
<td>7</td>
<td>252.0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>0.3</td>
<td>375.0</td>
<td>112.5 F-1</td>
<td>100.0</td>
<td>0.15</td>
<td>200.0</td>
<td>82.5</td>
<td>0.83</td>
<td>8</td>
<td>352.0</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>0.1</td>
<td>1000.0</td>
<td>100.0 G-1</td>
<td>150.0</td>
<td>0.01</td>
<td>900.0</td>
<td>91.0</td>
<td>0.61</td>
<td>9</td>
<td>502.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.5</td>
<td>75.0</td>
<td>37.5 B-1</td>
<td>75.0</td>
<td>0.00</td>
<td>0.0</td>
<td>37.5</td>
<td>0.50</td>
<td>10</td>
<td>577.0</td>
</tr>
</tbody>
</table>

© 2002 by Richard D. Stutzke
Est Proj Risk Res (27Sep02)
Predicted Total Cost vs Rank(RRL)
Deferring Mitigation Actions

- Some risks may never occur. (They expire)
- Some risks are almost certain to occur.
- Strategy to expend the risk reserve:
 - Preventative: Do something immediately
 - Contingent: Track the risk. Take action if threshold exceeded.
Choosing the Preventative Mitigation Actions

Mitigate a Task If:

1. $I_B > 0.05 \times \text{(Total Project Cost)}$

or

2. $RRL_i \geq 2$
Applying the Two Criteria

<table>
<thead>
<tr>
<th>ID</th>
<th>Owner</th>
<th>Title</th>
<th>Prob.</th>
<th>Cost ($K)</th>
<th>Impact ($K)</th>
<th>Before Mitigation</th>
<th>Action</th>
<th>Cost ($K)</th>
<th>Prob.</th>
<th>Cost ($K)</th>
<th>Impact ($K)</th>
<th>After Mitigation</th>
<th>Analysis</th>
<th>RRL</th>
<th>Notes</th>
<th>Sum</th>
<th>Prevent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>E</td>
<td>1.0</td>
<td>150.0</td>
<td>150.0</td>
<td>E-1</td>
<td>5.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>150.0</td>
<td>30.00</td>
<td>1</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>0.4</td>
<td>1500.0</td>
<td>600</td>
<td>J-1</td>
<td>100.0</td>
<td>0.15</td>
<td>500.0</td>
<td>75</td>
<td>525</td>
<td>6.25</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>2</td>
<td>P</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>0.4</td>
<td>500.0</td>
<td>200</td>
<td>I-1</td>
<td>30.0</td>
<td>0.10</td>
<td>500.0</td>
<td>50</td>
<td>150</td>
<td>5.00</td>
<td>1</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.3</td>
<td>25.0</td>
<td>7.5</td>
<td>C-1</td>
<td>2.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>7.5</td>
<td>3.75</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>2</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>0.2</td>
<td>1125.0</td>
<td>225.0</td>
<td>H-1</td>
<td>90.0</td>
<td>0.05</td>
<td>100.0</td>
<td>5.0</td>
<td>220.0</td>
<td>2.44</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.4</td>
<td>45.0</td>
<td>18.0</td>
<td>A-1</td>
<td>10.0</td>
<td>0.05</td>
<td>10.0</td>
<td>0.5</td>
<td>17.5</td>
<td>1.75</td>
<td>0</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0.2</td>
<td>100.0</td>
<td>15.0</td>
<td>D-1</td>
<td>15.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td>1.00</td>
<td>0</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>0.3</td>
<td>375.0</td>
<td>112.5</td>
<td>F-1</td>
<td>100.0</td>
<td>0.15</td>
<td>200.0</td>
<td>30.0</td>
<td>82.5</td>
<td>0.83</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>0.1</td>
<td>1000.0</td>
<td>100.0</td>
<td>G-1</td>
<td>150.0</td>
<td>0.01</td>
<td>900.0</td>
<td>9.0</td>
<td>91.0</td>
<td>0.61</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.5</td>
<td>75.0</td>
<td>37.5</td>
<td>B-1</td>
<td>75.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>37.5</td>
<td>0.50</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Example

<table>
<thead>
<tr>
<th>Type</th>
<th>Amount</th>
<th>Category</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$250.0K</td>
<td>Accepted</td>
<td>Sum of IA for all non-mitigated tasks</td>
</tr>
<tr>
<td>P</td>
<td>$227.0K</td>
<td>Preventative</td>
<td>Sum of mitigation tasks to be executed</td>
</tr>
<tr>
<td>R</td>
<td>$ 25.0K</td>
<td>Contingent</td>
<td>Sum of mitigation costs for deferred tasks</td>
</tr>
<tr>
<td>R</td>
<td>$130.5K</td>
<td>Remaining Impact</td>
<td>Sum of IB for all mitigated tasks</td>
</tr>
</tbody>
</table>

Total Reserve = $405.5K
Planned Tasks = $227.0K
Addressing Schedule Risk

• Delays may occur due to:
 – Repair or rework
 – Dependence on predecessor tasks
 \(\Rightarrow \) all tasks not affected

• Possible approaches
 – Use a Resource Loaded Network
 – Add a column to spreadsheet for schedule slip (if identifiable)*

• Advice
 – Reduce coupling between tasks
 – Include slack in the branches of the network
 – Include tasks for “large” contingent actions in the network

*Reference Chapter 5 in [McConnell, 1996]
References

