Monte Carlo Simulation for Software Cost Estimation

Pete MacDonald
Fatma Mili, PhD.
Definition

Quotes

In the Beginning

• Before you can have Software Maintenance, there exists new development.

• For new or substantially new development estimation is accomplished via COCOMO, etc.

• After several projects, REVIC estimates were within 10% of actuals if SLOC estimate was accurate.
Typical New Development

• Starts with a set of user requirements
• Analyze these requirements to develop software requirements
• Produce a design
• Implement the design by coding and testing
Software Maintenance

• Frequently performed by “newer” employees
• Understand the problem
 – There is a known problem with the code
 – Typically requires instrumenting the code
• After the problem is identified
 – The code is modified and tested.
 – Changes made to the code are then reflected in the analysis and design documents
Maintenance Life-Cycle Model

1. Understand the Problem
2. Implement the Change
3. Verify the Change
4. Document the Change
Discussion

• Understand the problem - typically requires instrumenting the software to discover the problem location and/or potential solutions
• Implement the change - coding a potential correction into the software
• Verify the Change - test the change to verify the problem has been corrected
• Document the Change - Update the Software Requirements and/or Design Documents to reflect change in the software
SW estimating at GD

• Evolved via software process improvement activities
• Initially performed using REVIC
 – Once calibrated, estimates were within 10% if SLOC estimate was correct
• In ‘95 started software maintenance of existing software
• Attempted to apply REVIC
Initial Approach

• Difficult to estimate % of change
 – Design, Code & Test

• Looked at effort required
 – Used an average
 – Eliminated high and low outliers

• Went to engineering judgement
 – More accurate but difficult to quantify
Initial Approach continued

• The way REVIC was applied led to inaccurate estimates
• Reverted to Engineering Estimates
• Example - Modification requires 25 SLOC
 – Is percentage of the Program or File?
 – Are Integration changes only the amount of tests changed or include the effort to execute the required test cases?
Second Approach

- Effort data for changes were available
- Discarded the outliers
- Take mean of remaining data and use as a “typical” Change
- Tended to cause an under estimation.
- Again Reverted to Engineering Estimate
Effort Distribution

Histogram
Engineering Judgment

• Accomplished by senior developers
• May incorporate “Delphi technique”
• Difficult to quantify and/or justify
• Lacks the structure of a parametric model
• Historical data only in the memory of the engineer
Monte Carlo Simulation

• Necessitates the use of multiple random distribution functions
 – Single distribution would like using the mean
• Distributions are slightly overlapping subsets of historical effort data
• Run multiple simulations to produce an estimate
 – Typically requires a minimum of 100 runs
 – Take the average of the runs.
Current Approach

• Apply Monte Carlo Simulation Model
• Senior Developers classify changes as
 – Simple, Typical or Difficult
• Each classification has its own distribution function
• Implementing a change into a baseline can induce the requirement to include additional changes
Model Overview

- Distribution by Classification
 - Simple Changes
 - Typical Changes
 - Difficult Changes
 - Defects Induced

- Total effort = Sum of the hours estimated to all changes plus the effort to correct induced defects
Defining the Distribution Functions

• Historical effort data is collected and maintained in ascending order
• Must have at least 40 data points to generate a distribution function
• Must validate each distribution
 – Mean square error < 0.005
 – Chi-Square and Kolmogorov-Smirnov tests > 0.05
An Example

• Given 30 changes to be implemented as follows
 – 10 easy
 – 15 typical
 – 5 difficult

• Produce an estimate to implement the changes.
Example Continued

\[Tria(39, 55, 7, 170) \]

\[75 + \logn(130, 70) \]

\[505 + \text{Expo}(293) \]

\[\sum = 8067 \text{ hours} \]

\[\text{Disc}(1, 0.33, 2, 0.83, 3, 1.0) \]

\[\text{Disc}(1, 0.80, 2, 1.0) \]
Results utilizing Arena

Project: SW Estimator
Run execution date: 9/24/2002
Analyst: Pete MacDonald
Model revision date: 9/24/2002

OUTPUTS

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Average</th>
<th>Half-width</th>
<th>Min</th>
<th>Max</th>
<th>Replications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>1976.9</td>
<td>26.61</td>
<td>1651.1</td>
<td>2405.2</td>
<td>100</td>
</tr>
<tr>
<td>Effort</td>
<td>8065.9</td>
<td>346.18</td>
<td>4526.6</td>
<td>14681.</td>
<td>100</td>
</tr>
</tbody>
</table>

Simulation run time: 0.08 minutes.
Comparison of Methods

<table>
<thead>
<tr>
<th>No. of Changes</th>
<th>Actual</th>
<th>Typical Fix</th>
<th>3rd Try</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>Actual</td>
<td>14710</td>
<td>9429</td>
<td>8468</td>
</tr>
<tr>
<td>Typical Fix</td>
<td>9000</td>
<td>7500</td>
<td>4000</td>
</tr>
<tr>
<td>% Error</td>
<td>38%</td>
<td>20%</td>
<td>53%</td>
</tr>
<tr>
<td>3rd Try</td>
<td>11465</td>
<td>7115</td>
<td>6936</td>
</tr>
<tr>
<td>% Error</td>
<td>22%</td>
<td>14%</td>
<td>18%</td>
</tr>
<tr>
<td>Current</td>
<td>14369</td>
<td>9848</td>
<td>8023</td>
</tr>
<tr>
<td>% Error</td>
<td>2.5%</td>
<td>4.5%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Where do we go from here

- Automate generation of random distribution functions.
- Evaluate induced error data.
- Evaluate the application of Monte Carlo simulation as a Systems Engineering estimation tool.
- Include Engineer effectiveness factor.