Software Cost Risk Estimation and Management at the Jet Propulsion Laboratory

Jairus Hihn
Karen Lum

17th International Forum on COCOMO and Software Cost Modeling
October 22-25, 2002
Background & Context

- NASA’s Jet Propulsion Laboratory is a Federally Funded Research & Development Center whose prime mission is the development and operation of deep space scientific missions.

- JPL has had a very strong emphasis on estimating and managing technical risk for over 40 years.

- Because of hard launch dates schedule was closely managed.

- However, software cost risk has only become a serious focus very recently.
History

- **Pre-1989**
 - Limited use of cost models even though Softcost was originally developed at JPL by R. Tauseworth and D. Reifer. JPL Softcost did not estimate software cost risk.
 - Software cost risk addressed only with risk lists with ‘loosely’ defined mitigation approaches. There was little to no quantification.

- **1989-1996**
 - Developed SCT, a JPL-variant of COCOMO 81 with built-in
 - Monte Carlo algorithms to generate a development effort CDF
 - Calibration
 - Calibration database
 - Used regularly to validate DSN software development effort
 - Software cost risk addressed only with risk lists with ‘loosely’ defined mitigation approaches. There was little to no quantification except when SCT was used.
1996-2001

– Software Cost Estimation and Cost Risk activities took a major step backward under Faster, Better, Cheaper
– Optimistic assumptions were ‘de rigueur’
– Software cost risk addressed only with risk lists with ‘loosely’ defined mitigation approaches. There was little to no quantification.

2001-Today

– Software Quality Improvement project and JPL Costing Office Formed
– Software cost models and formal cost databases required
 • COCOMO II and SEER-SEM
– Quantitative software cost risk estimates and analysis required
– JPL Senior Management now ask “Where is your ‘S’ curve?”
– Numerous explorations into quantitative cost and cost risk management
Figure 1: Overall Cost/Quality Modeling Effort
Software Estimation Steps

Gather & Analyze

- Technical and Programmatic Requirements

Define Work Elements

Estimate Software Size

Estimate Effort

Schedule the Effort

Calculate Cost

Determine the Impact of Risk

Validate the Estimate via Models & Analogy

Reconciliation

Review & Approve Estimates

Track & Report Estimates

Cost Metrics Archive

- SW Cost Inputs
 - Requirements
 - Architectural Design
 - Mission/Project Sched.
 - Implementation Appr.
 - Mission/Project WBS
 - SW Implementation and Design Approach

- Applicable Processes & procedures
 - Design principles
 - Std WBS
 - NASA & OMB Reqs

Constraints

Gather & Analyze Technical and Programmatic Requirements

Define Work Elements

Estimate Software Size

Estimate Effort

Schedule the Effort

Calculate Cost

Determine the Impact of Risk

Validate the Estimate via Models & Analogy

Reconciliation

Review & Approve Estimates

Track & Report Estimates

Save History

Engineering Estimate

Estimate Risk

Model-Based Estimate

Follow Through
Downward bias very likely if estimator does not formally account for underlying probability distribution.

Typically cost, effort, SLOC distributions are highly skewed to the right.

Point estimates tend to fall between the low and most likely distribution parameters and Most Likely is typically less then 50th percentile.
Uncertainty & Cost Risk Overview

<table>
<thead>
<tr>
<th>Known Unknowns</th>
<th>Design Principle Reserve Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Forgot’s</td>
<td>Standard WBS Templates & Checklists</td>
</tr>
<tr>
<td>Known Unknowns</td>
<td>Risk Lists Quantitative Risk Assessment</td>
</tr>
<tr>
<td>Known</td>
<td>Estimate Uncertainty</td>
</tr>
</tbody>
</table>

Unknown Unknowns
Software Development Cost Cumulative Distribution Function

- Recommended Budget with Reserves => 70%
- Risk-Adjusted Primary Estimate => 55%, $1.25M
- Recommended Minimum without Reserves => 60%
- At Primary Estimate => 40% Probability, $1.1M

Recommend between $1.2-1.4M
Future Cost Risk Methods

- Estimating 99th percentile and assuming a Log Normal distribution instead of Low, Likely, and High

- Using Cluster analysis to identify analogous projects

- Formal cost risk analysis, mitigation and tracking with DDP
Cost Risk Estimates Based 99th Percentile

Example Cost Risk Sensitivity CDF

- Total
- Mechanical (RMM00)
- Power (RPB00)
- System Engr (R2000)

Cost ($FY'93K)

Probability
Incorporate cluster analysis information to quantify total cost risk

- Identification of closest analogy should be based on proposal values or similarity to current vintage of estimate
- Quantitative analysis is focused on history of actual values for analogy mission
DDP Visualizations - Bar Charts

FM's bar chart

- **Unsorted** – order matches leaf elements in FM tree

- **Sorted** – in decreasing order of remaining risk

Green: of this FM’s total Impact on Requirements, that saved by PACTs

Red: of this FM’s total Impact on Requirements, that remaining despite PACTs

Requirements bar chart – how much each is impacted

PACTs bar chart – how much impact each is saving
We may be late bloomers but we are fast learners