Systems Cost Modeling

CIF 15 Workshop
Participants

Gary Thomas, Raytheon
Tony Jordano, SAIC
Jeff Swift, Lockheed Martin
Evin Stump, Gallorath
Madelline Ellis, Boeing
Dennis Bink, Raytheon
Denton Talbert, Litton
Howard Baetjer, Tonson U
Winsor Brown, USC
Elliot Axelband
Basic Source Information

GT Position Paper
NASA Systems Eng'g Guidebook
PSP Size Estimating
Mil Std 881b: WBS
Sw Cost Estimation with COCOMO II
DOD 5000.1, 5000.2, 5000.2R
EIA 632 & IEEE 1220 (SE process);
and EIA 731 (assessment)
ISO 12207
CMMI
Pages 48 to 58 of Barry's COCOMO II & MBASE
Approach for estimating system engineering cost (by
Katherine J Tilton, Virginia Tech 1992)
The Issues

Scope: All the SE activities

Goals: Size? Effort? Schedule?
 Educated SysEs about Sw cost estimating?
 Better integration with SwEng’g plans & estimates?

[Need early success]

[Maintain mapping to DOD terminology]
Scope

All the activities encompassed/called systems engineering: breaking system down functionally, physically distributing, ...

If the system is an Aircraft (flow-down of requirements):
- Level 1 = aircraft (take-off, land, carry, launch, ...)
- Level 2 = avionics (sense, detect, control, ...)
- Level 3 = radar (sense, detect, track, ...)
- Level 4 = antenna, signal processor, display,
Scope is at Level 4, maybe Level 3, but not Level 2.

Full life cycle: idea to production
MBASE Project Start (PS) to Product Release (PR)

System engineering activities

Development Cost
Anchor points

May need to go beyond [modify] MBASE (IOC misunderstanding; PRR; ...)

Look at ISO standard

Life Cycle Phases – MBASE vs WF
New Parameters

Modeling complexity

New algorithms

What Needs to be Added

To cover the "decomposition" of the system

To cover "integration" (the distinctly different) activities
Scope (Cont.) & A Plan of Attack

The total system engineering effort for the next larger, software-intensive system than the software-only system

- Increment 1: expand COCOMO II to software system engineering
 - including software systems engineering and software engineering activities covering the MBASE phases of Inception, Elaboration and Construction (but not including hardware integration in an embedded system during construction)
 - excluding system engineering related to the hardware system engineering; and software & Systems and Software Engineering in Transition
Plan of Attack (cont.)

- Increment 2, Alt. 1: expand to cover the hardware and software integration in both Construction (embedded hardware) and the Transition phase of the MBASE

- Increment 2, Alt. 2: expand to cover hardware developmental system engineering, hardware prototype construction, and hardware/software integration

- Increment 3 ...
Sizing

Requirements? (domain specific? Level of detail?)

- Countable? [system spec "shall"s]
 - Explicit? Implied?
 - Before Inception¹ (IRR)? At IOC (PR)?
 Need Early Design & Post Architecture models?

- May need a complexity factor?
 - May need adaptation/reuse
 - May "equivalent shalls"
 - Clarity? Linkages or hidden dependencies?

Number of Subsystems

¹ MBASE
Sizing (cont.)

Need requirements volatility & evolution (REVL) [volatility or stability]; requirements maturity; Stability of the "environment" [for the requirements volatility]

Have estimation techniques:

- Analogy
- HCA
Other Suggested Parameters (5 years old)

of requirements
TBD, TBR (resolved)
of internal and external interfaces
of documents
Types of documents and relative difficulty factors
Number of [customer attended formal] reviews recommend for the program and relative complexity regarding preparation
Amount of customer oversight [help?] imposed [BUSB]
Schedule for the program
Cost of material to be delivered to customer
Other Suggested Parameters (5 years old; cont.)

Cost of the software development
Program type?
Design maturity [precededness? of host system]
Program staff experience
Tasks

1. Delphi to ID "top" parameters (cost drivers)
2. Map how to size to where you are in development cycle
3. Identify Industry (customer) needs: Propose user screens (input/output) and/or use-cases for operations
4. ID initial data sources [and get some]
5. Consider major Block Change treatment
6. Relationship of USC/CSE – INCOSE (find a "home" in INCOSE?)
7. Assessment Data Repository proposal and this SE estimation effort
8. Scope & Define the Model
Tasks

9. Software system of systems cost model(?) And tools (and/or what if games)

10. Compare & contrast MBASE (as is today) with MBASE extended to cover systems engineering tasks

11. Apply MBASE tools and techniques in Systems and Software Systems Engineering

* OCD & "Inception"

* EasyWinWin (requirements elicitation/clarification)

* Results Chain
Difficulty/Importance

![Difficulty/Importance Diagram]

© 2000 USC Center for Software Engineering