CS599 Software Process Modeling
Week 7

Ray Madachy

October 12, 1999
Outline

• Quiz #2
• Modeling reminders
• Signups for student project briefings
• Calibration example using process concurrence homework problem
• General system behaviors
• Rayleigh model
Modeling Reminders

• For all homeworks and projects
 – always show equations
 – liberally include comments in equations
 – provide rationale for numeric values and calibrations
 – show outputs for different simulation cases
 – discuss results
Term Project Briefings

• Plan for about 20 minutes presentation
• Describe problem and background
 – what will result from your study
• Show system boundary
• How will a user interact?
 – inputs and outputs
 – a prototype of I/O would be very useful to show
• Reference behaviors and other methods of verification
• Other material as appropriate
• Signups
Calibration Example

• Use COCOMO II model to match the given effort for the software development portion
 − derive schedule, personnel count and productivity rates for the model from COCOMO estimate
 − derive the nominal specification productivity from problem statement
 − Example
 • nominal COCOMO estimate for 16 KSLOC is 6 person-years (72 person-months) and 11.3 calendar months
 • nominal software development productivity = 16 KSLOC/72 person-months = .222 KSLOC/person-month
 • average personnel = 72 person-months/11.3 months = 6.4 people
 • nominal specification productivity = 16 KSLOC/24-person-months = .666 KSLOC/person-month

• For homework, experiment with different staffing patterns and process concurrence relationships
Staffing Waste

- Rayleigh-like ideal staffing pattern vs. constant level-of-effort

![Graph showing staffing waste with Rayleigh-like pattern and regions of wasted effort and not enough people.]
General System Behaviors

• Behaviors are representative of many known types of systems.
• Knowing how systems respond to given inputs is valuable intuition for the modeler.
• Can be used during model assessment
 – use test inputs to stimulate the system behavioral modes.
System Order

- The order of a system refers to the number of levels contained.
- A single level system cannot oscillate, but a system with at least two levels can oscillate because one part of the system can be in disequilibrium.
Example System Behaviors

• Delays
• Goal-seeking Negative Feedback
 – First-order Negative Feedback
 – Second-order Negative Feedback
• Positive Feedback Growth or Decline
• S-curves
Delays

- Time delays are ubiquitous in processes
- They are important structural components of feedback systems.
- Example: hiring delays in software development.
 - the average hiring delay represents the time that a personnel requisition remains open before a new hire comes on board

```
new_hires(t) = new_hires(t - dt) + (hiring_rate) * dt
INIT new_hires = 0
INFLOWS:
  hiring_rate = personnel_requisitions/average_hiring_delay

personnel_requisitions(t) = personnel_requisitions(t - dt) + (-hiring_rate) * dt
INIT personnel_requisitions = 100
OUTFLOWS:
  hiring_rate = personnel_requisitions/average_hiring_delay
  average_hiring_delay = 10
```
Third Order Delay

- A series of 1st order delays
- Graphs show water levels over time in each tank

tank 1 starts full
Delay Responses to Pulse Input

- First, second and third order delay responses to a pulse input
Delay Responses to Step Input

- First, second and third order delay responses to a step input
Delay Summary

<table>
<thead>
<tr>
<th>Delay order</th>
<th>Pulse input</th>
<th>Step input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infinite (pipeline)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Negative Feedback

• Negative feedback exhibits goal seeking behavior, or sometimes instability
• May represent hiring increase towards a staffing goal. The change is more rapid at first and slows down as the discrepancy between desired and perceived decreases. Also a good trend for residual defect levels.

\[\text{rate} = \frac{\text{goal} - \text{present level}}{\text{time constant}} \]

Analytically:

Level = Goal + (Level_0 - Goal)e^{-t/\tau_c}

cs599 10/12/99
Orders of Negative Feedback

• **First-order Negative Feedback**

 ![Graph](image)

• **Second-order Negative Feedback**

 - Oscillating behavior may start out with exponential growth and level out. It could represent the early sales growth of a software product that stagnates due to satisfied market demand, competition or declining product quality.

 ![Graph](image)
Positive Feedback

- Positive feedback produces a growth process
- Exponential growth may represent sales growth (up to a point), Internet traffic, defect fixing costs over time
- \(\text{rate} = \text{present level} \times \text{constant} \)

Analytically:
- Exponential growth: \(\text{Level} = \text{Level}_0 e^{at} \)
- Exponential decay: \(\text{Level} = \text{Level}_0 e^{-t/TC} \)
S-Curves

- **S-curve**: graphic display of a quantity like progress or cumulative effort plotted against time that exhibits an s-shaped curve. It is flatter at the beginning and end, and steeper in the middle. It is produced on a project that starts slowly, accelerates and then tails off as work tapers off.
- S-curves are also observed in the ROI curve of technology adoption, either time-based return or in production functions that relate ROI to investment.
Information Smoothing

- Smoothed variables exponentially seek the input signal
Rayleigh Manpower Distribution

• Rayleigh curve is a popular model of personnel loading

• Assumptions:
 – Only a small number of people are needed at the beginning of a project to carry out planning and specification. As the project progresses and more detailed work is required, the number of staff builds up to a peak. After implementation and unit testing is complete, the number of staff required starts to fall until the product is delivered.
 – The number of people working on a project is approximately proportional to the number of problems ready for solution at that time
Rayleigh Formula

- A Rayleigh curve describes the rate of change of manpower effort per the following first order differential equation:

\[\frac{dC(t)}{dt} = p(t)[K - C(t)] \]

where \(C(t) \) is the cumulative effort at time \(t \), \(K \) is the total effort, and \(p(t) \) is a learning function. The learning function is linear and can be represented by

\[p(t) = 2at \]

where \(a \) is a positive number.

- The manpower rate of change represents the number of people involved in development at any time (staffing profile).
- The \(a \) parameter is an important determinant of the peak personnel loading called the manpower buildup parameter.
Rayleigh Model

Graph 1: p2 (Untitled)

- cumulative_effort(t) = cumulative_effort(t - dt) + (effort_rate) * dt
- INIT cumulative_effort = 0
- INFLOWS: effort_rate = learning_function*(estimated_total_effort-cumulative_effort)
- estimated_total_effort = 15
- DOCUMENT: Estimated total effort for the project.
- learning_function = manpower_buildup_parameter*time
- DOCUMENT: The Norden learning function.
- manpower_buildup_parameter = 5
- DOCUMENT: The manpower buildup parameter determines the steepness of buildup and the peak personnel loading.
Interactive Rayleigh Model Demo

- Vary manpower buildup parameter
- Show effect of midstream added requirements
- Demonstrate S-curve
Homework

- Prepare introduction to term project briefing
- Complete external process concurrence homework