Background

• Emerging trend towards COTS and GOTS leverage
• Integration challenges are inevitable
 – COTS products
 – Legacy applications
• Flexibility and adaptability are key
 – Emerging but immature technologies and standards
 • JAVA, Object Databases, CORBA
 – Similar and sometimes conflicting technologies
 • CORBA, COM, MOM
 • C/C++/J++/VB
 – Heterogeneous networks
 – Scalability
Open Architecture Philosophy

• Reduce cost and complexity by relying on native features of GOTS and COTS products.

• Reduce lifecycle costs
 – Rely on vendor/supplier maintenance support for COTS products.
 – Adherence to applicable (and sensible) design and implementation standards
 • POSIX, ANSI, IEEE, etc.

• Provide abstractions for replaceable components
 – Small, specialized, loosely coupled components

• Model the architecture on events, not the HMI
 – Message- and event-driven processing
RSC Architecture Overview

- RDT&E Support Complex, Kirtland AFB, NM
- COTS-based real-time architecture
- Integration of “horizontal” and “vertical” applications
 - Horizontal: Sybase, GREAS, Mathematica, PVWAVE
 - Vertical: STK, OASYS, PODS, IMT, AIM, ACM, System 500
- Commercial message-oriented middleware provides the “glue”
 - Message-based, publish-subscribe, event-driven paradigm
 - Standardized, extensible message passing protocol eases integration of COTS and legacy products
 - Messaging bus for all system communication: status, control, telemetry data
Scalability and Adaptability

• **Scalability**
 – 1 to N workstations
 – 1 to N “strings” or “instances”

• **Portability**
 – Standards conformance.
 – COTS products drive compatibility

• **Individual components easily replaceable**
 – Top-down architecture
 – Functionally decomposed into small, specialized units
 – Design lends itself to OO migration
CORBA and MOM

• “So, what’s your CORBA migration path?”
• Separate but comparable technology
 – CORBA relies on synchronous transactions
 – MOM is asynchronous
 • Important to the event-driven paradigm - applications need to
generate and respond to multiple different events in a timely manner
 – High speed message passing is CRITICAL to real-time TT&C
 – Current implementations of CORBA have insufficient performance
characteristics to fulfill high data-rate mission requirements
• No asynchronous messaging standard for CORBA
 – Talarian is working with the OMG to define an asynchronous
messaging standard for CORBA (see earlier philosophy)
The Bottom Line

- This architecture exists and flies satellites today; it is not just on paper
- There are less than 200K LOC (custom) in this system
- Total investment in deploying this architecture to date is less than $10M
- It exists today, and it will still be new tomorrow