Evolution of Net-Centric Data Services at the Air Force Weather Agency (AFWA)

March 20, 2013

Andy Sedlacek
Northrop Grumman Information Systems Software Project Manager
Agenda

• AFWA Mission Overview
• Background
• AFWA Evolution - First: Joint Meteorological and Oceanographic (METOC) Services
 • Joint METOC Services Lessons Learned
• AFWA Evolution - Next: Enterprise Geographic Information System (e-GIS) Services
 • e-GIS Services Lessons Learned
• AFWA Evolution - Current: Air Force Weather Web-Services (AFW-WEBS)
 • AFW-WEBS Lessons Learned
• Conclusion
AFWA Mission Overview

Maximizing America’s Power through the Exploitation of Timely, Accurate, and Relevant Weather Information; Anytime, Everywhere
AFWA Mission Overview

• AFWA Headquarters (HQ) provides centralized support for:
 – Fine scale weather modeling.
 – Global cloud analysis and forecasts.
 – Space weather observations, analysis, and forecasts.
 – Climatological products, services, and storage of USAF Climatic Data.
 – Armed Forces Network regional Long Range Forecasts/Outlooks.
 – Weather analysis and forecasting for the National Intelligence Community.
 – Global volcanic ash monitoring, modeling and prediction.
 – Host a single web portal of Air Force (AF) weather and climatology information.

• Appropriate information needed at each level of the organization’s structure
 – Central HQ
 – Regional Hubs
 – Unit Support Flights

Complex, data dense, mission
Background

• Department of Defense (DoD) Net-Centric Services Strategy directive
 – Stemming from Gulf War conflict inability to share information
 – Standards based Services Oriented Architecture (SOA) to promote interoperability
 – Discoverable services
 • Reuse in multiple applications
 • Use authoritative sources

The need for Net-Centric, Sharing of Data Drove Evolution
Background

- AFWA historically produces 800,000+ products per day – primarily for human consumption
 - Data collected globally
 - Terrestrial and space based sensors
 - High amounts of time sensitive data
 - Products created often unused

- Data historically pushed via File Transfer Protocol (FTP) to end systems which had to process weather specific data formats
 - Weather Products Management Distribution System (WPMDS), Weather Secured (WS) FTP1, Multiple specialized systems
 - Minimal control and monitoring of endpoints and subscriptions

- Multiple web sites to display prebuilt imagery and text products
 - Imagery lacks geospatial references and other metadata
 - Text products require domain knowledge or decoder to interpret

Need to modernize through netcentric approaches
- Streamline & centralize ops
- Focus on services
- Machine-to-machine interoperability

Need to modernize and streamline through netcentric approaches
AFWA Evolution
First: Joint METOC Services

• First AFW effort at discoverable web based services
 – Joint METOC Broker Language (JMBL) services
 • Simple Object Access Protocol (SOAP)-based web services
 • Very complex for ad hoc data pulls
 • Implementation required significant integration efforts
 • Extensible Markup Language (XML) schema very verbose
 – Consolidated Dissemination Capability (CDC)
 • Data push
 • End user management of data subscriptions
 • Improved organizational control of endpoints/subscriptions
Joint METOC Services Lessons Learned

• Service complexity has costs
 – Difficult adoption and integration
 – Higher costs to maintain complex systems
 – Higher costs to support user base
 – Lower performance/throughput

• No universal standard
 – Limited interoperability between applications and services

• Legacy systems have challenges
 – Not service capable
 – Avoid service adaptors
 • Increased coupling and complexity

• DoD services registry and discovery incomplete
 – Goal of easy search and addition of services not yet achievable
• Technology Overview
 – Implementation based on Commercial Off-the-shelf (COTS) GIS tools and services
 – Focus on implementing Web Mapping Service (WMS)
 • Imagery service gives information above raw data
 • Common Operational Picture integration
 • Discoverable using getCapabilities
 • Compliant with Open Geospatial Consortium (OGC) standards
 – WMS
 – Keyhole Markup Language (KML)
e-GIS Services Lessons Learned

- COTS solution required a lot of tuning to support high data volumes and highly-perishable data

- Initial frameworks and standards not well positioned for weather services
 - For example, time, elevation, and other dimensions not defined

- AFWA saw quick adoption
 - WMS and KML integration much easier
 - Simple Universal Resource Locator (URL) request vs. SOAP envelope
 - Loose coupling – no adaptors needed

- Generated interest in additional services
 - Expanded imagery services
 - Data services

- Demonstrated benefits to enterprise architecture of on-demand services
 - Reduced processing
 - Less file routing
 - Reduced latency of information to users
AFWA Evolution: Current: AFW-WEBS

• Technology Overview
 – OGC Services based solution
 • Utilized COTS weather solution designed for services
 – Refreshed front end web presence
 • Modern interfaces exploiting services
 • Replacing web sites and legacy imagery production
 – Services
 • WMS and KML
 • Web Feature Service (WFS) for point information
 • Evaluating Web Coverage Service (WCS) for data exposure
 – Caching
 • Image tile caching
 • Performance and scalability needed for services to be relevant
AFW-WEBS Lessons Learned

• COTS weather service solution was successful
 – Easier to increase service offerings
 – Performance and scalability tuning still important

• Evolving OGC standards
 – WCS standard lacking
 – Extensible standards flexible, but at the cost of interoperability

• Legacy applications need to be phased out
 – Gradual transition allows for user adoption
 – Training, documentation, and communication
 • Collaboration tools help organization and users stay in sync

• Need to move some business logic into the services
 – Web Processing Services (WPS)
 • Reduced application complexity
 • Improved customization of services
 • Move from information to impacts
Conclusion

• AFWA is continuing to work on evolving net-centric data services
 – Improving and expanding existing services
 – Data services using WCS
 – Investigating WPS

• Challenges
 – Ability of legacy systems to adapt
 • User community and organization need to evolve together
 • Coordination and communication are musts
 • Organization needs commitment to change
 – Upgrade or replace legacy systems
 – High data volumes, highly-perishable data
 • Performance and scalability require constant improvement
 • Improved data density and latency will always be desirable
 – Evolving Standards
 • Extensions and improvements to standards can help expand capabilities
 • Keeping up with standards while minimizing service impacts a challenge

Services need to continue to evolve to stay relevant
THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN
BACKUPS
AFWA Mission Overview

- Provide regional scale analysis and forecast products, data and services through subordinate Operational Weather Squadrons and Weather Squadrons.
 - Operational Weather Squadrons provide regional support
 - Issue site forecasts
 - Mission planning weather analyses
 - Weather Flights provide unit level support
 - Flight briefings
 - Observations
 - Special Operations Weather and Army Weather Units support isolated deployments
 - Direct mission support
 - Space Weather Operations
 - Space weather analyses, forecasts and alert notifications