Acquiring Software-Intensive Ground Systems with Evolving Requirements

Suellen Eslinger
Software Engineering Subdivision
Computers and Software Division

April 2, 2008
Outline

→ Background

• Pre-Systems Acquisition: Planning for Requirements Evolution
 ❖ Defining the program to accommodate evolving requirements

• Systems Acquisition: Managing Requirements Change
 ❖ Using failure scenarios to help understand and manage volatility
The DoD and NSS Acquisition Models
Tailored for Software-Intensive Systems without Production

NSS Space Acq Policy 03-01 (Adapted)

Key Decision Points:
- Pre-KDP-A Concept Studies
- PHASE A Approval
- PHASE B Approval
- PHASE C Approval
- Build Approval
- Follow On Buy Approval
- 1st Launch
- IOC
- FOC
- Upgrade Decision

Milestones:
- Pre KDP-A Concept Studies
- PHASE A Concept Development
- PHASE B Preliminary Design
- PHASE C Complete Design
- PHASE D Build & Operations

Concept
Decision

Technology
Development

System Development & Demonstration

Deployment

Operations & Support

DoDI 5000.2 (12 May 2003) (Adapted)
The Evolutionary Acquisition Pattern

Increment 1

Increment 2

Increment 3

Acquisition Phases
- Pre KDP-A Concept Studies (KDP: Key Decision Point)
- A – Concept Development
- B – Preliminary Design
- C – Complete Design
- D – Build and Operations
Highlights of Evolutionary Acquisition

• Evolutionary Acquisition is an approach to deliver capability in increments
 ✔ It is recognized up-front that new, improved capabilities will be needed in the future

• Objective is to get mature technology rapidly to the user
 ✔ Implement/deliver early those aspects of required capabilities that already have their underlying mature technology foundation
 – There is an implied recognition that technology can be both the driving and limiting force in software-intensive system development.

• Evolutionary Acquisition is the preferred acquisition strategy for the DOD
 ✔ Its use helps in mitigating selected, anticipated risks, such as
 – Requirements volatility
 – Technology risks
 – Dealing with system complexity
 – etc.
Outline

• Background
 ‒ Pre-Systems Acquisition: Planning for Requirements Evolution
 ◦ Defining the program to accommodate evolving requirements

• Systems Acquisition: Managing Requirements Change
 ◦ Using failure scenarios to help understand and manage volatility
Best Practices for Defining the Program Life Cycle

Use a **software-friendly acquisition model**

- Evolutionary acquisition is more suited to large, complex software-intensive systems

Tailor the acquisition model for software-intensive system

- Selection of a single contractor at appropriate point in software development life cycle
- With or without production phase

Choose **software-friendly points in the life cycle for contract actions**

- Avoid contract actions in the middle of software development spirals (e.g., post System PDR)
- Develop firm basis for software costing before MS B/KDP B
Best Practices for Developing the System Architecture

Perform **software-inclusive architecture trade studies**

- With system architecture trades
- Identify and address critical HW/SW architecture issues
- Include major legacy components and COTS software

Select a set of **integrated HW/SW architecture concepts**

- Able to grow with each successive evolution with little expected rework
- Able to integrate each successive evolution with previous evolutions (and legacy system, as applicable)

Include **software** in evaluation of architecture concepts

- Evaluate software evolution and growth capability
- Include software in life cycle cost analysis (COTS software refresh, legacy and new software re-engineering and maintenance)
Best Practices for Developing the Government Cost and Schedule Baseline

Determine **realistic SW size estimates** for each evolution

- Use Gov’t. HW/SW architecture concept
- Include all SW functionality and infrastructure needed
- Use historical data from similar past programs & early concept study data

Determine **realistic SW effort & cost estimates** for each evolution

- Include COTS, reuse & new software
- Include tasks not reflected in cost models (e.g., integration of SW components costed separately, COTS)
- Estimate at least at 80% likelihood level

Determine **realistic SW schedule estimates** for each evolution

- Include all software effort in schedule
- Never compress software schedule >20% off nominal*

Gov’t. Cost And Schedule Baseline

Best Practices for Defining Executable Program Evolutions

Consider **SW implications when defining evolution capabilities**

- Analyze feasibility of developing the required software for each evolution
 - Based on realistic software size, effort, cost & schedule estimates
 - Include software cost and schedule estimation risk
- Analyze feasibility of integrating the software in each evolution with all previous evolutions (and legacy system(s), as applicable)
 - Based on integrated hardware/software architecture
- Plan for COTS hardware and software refresh, legacy software upgrades, and new technology insertion in each evolution

Consider **SW implications when defining evolution schedules**

- Analyze feasibility of overlapping software development schedules for closely spaced evolutions
- Avoid plans that require developing subsequent evolutions on unknown software baselines
- Analyze feasibility of COTS refresh and legacy SW upgrade schedules

Executable Program Evolutions
Best Practices for Reducing Software Development Risk

Contract for software product risk reduction

- Studies/prototyping of high risk areas for software, e.g.,
 - Mission data processing algorithms
 - Mission planning concepts
- Simulation development
- Increase readiness level of computer HW and SW technologies

Contract for software process risk reduction

- Require delivery of Software Development Plan (DID DI-IPSC-81427a)
- Require compliance with robust software development standard
- Enable contractor team to prepare for software capability evaluation
Updating the Global Acquisition Strategy for Evolutionary Acquisition - 1

Global Acquisition Strategy

Feedback

Acquisition Planning

Pre-
A

A

B/C/D

Increment 1

B/C/D

Increment 2

B/C/D

Increment 3

A

B

C

IOC

A

B

C

IOC

Ongoing or near term

Future planning

The Aerospace Corporation
Updating the Global Acquisition Strategy for Evolutionary Acquisition - 2
Outline

• Background

• Pre-Systems Acquisition: Planning for Requirements Evolution
 ❖ Defining the program to accommodate evolving requirements

→ Systems Acquisition: Managing Requirements Change
 ❖ Using failure scenarios to help understand and manage volatility
Requirements Creep
IKIWISI

Description:
Requirements creep describes the activity of evolving the system to be what the user/customer/SPO desires it to be. This most often is witnessed during the development of an unprecedented system applying new technology. As the system definition evolves, the technical knowledge of the people involved also increases, providing opportunities for “improvement” in the initial system vision.

Red Flag: Many conflicting stakeholders; many unknown requirements

Scenario Summary:
- Increasing requirements and requirements changes
- Increase in code estimates
- Additional personnel needs cannot be met due to unavailability
- Quality activities are reduced in an attempt to make up schedule
- Milestone slips occur as reduced productivity and rework show up
- More personnel are added, further reducing productivity
- Cost increases are experienced
- Schedule slip is experienced
- Finally, a contract breach occurs
Requirements Creep Profile Indicators

- Contract Breach
- Cost Increase and Schedule Slip
- Quality Reduction
- Process Compliance
- RM

Program Impact ->

- Contract Breach
- SPO Satisfaction Rating
- Cost and Schedule Impact
- SPO Effort Performing Ind. Audits
- Quality Impact
- KTR Effort Developing EAC
- Compliance Impact
- SQA Effort on Project
- Process Audit Findings
- Progress Impact
- KTR Effort on Project
- Lines of Code Estimate Changes
- RM = Requirements Management

Red Flag: Many conflicting stakeholders; many unknown requirements
Critical Indicator Set
Requirements Creep Profile

- **Requirements Stability** >1%\(^7\) per month of unstable requirements for 3 consecutive months indicative of an unstable project

 EXAMPLE: Volatility Index indicates unstable condition for Mar/Apr/May

- **Lines of Code Estimate Changes** Growth in SLOC estimate is >20%\(^8\) necessitates project rescope

 EXAMPLE: New SLOC Estimate - Old SLOC Estimate = Lines of Code Estimate Changes (1450-1000.1/1000.1 = 45%)
The DoD and NSS Acquisition Models
Tailored for Software-Intensive Systems without Production

NSS Space Acq Policy 03-01 (Adapted)

Key Decision Points:
- Pre-KDP-A
- Concept Studies

Pre-Systems Acquisition:
- PHASE A Approval

Systems Acquisition:
- PHASE B Approval
- PHASE C Approval
- Build Approval
- Follow On Buy Approval
- 1st Launch

Sustainment:
- IOC
- Upgrade Decision
- FOC

Milestones:
- PHASE A Approval
- PHASE B Preliminary Design
- PHASE C Complete Design
- PHASE D Build & Operations

Concept Decision

SRR SDR

PDR

CDR

Technology Development

Approval

Design Readiness Review

Operations & Support

Deployment

DoDI 5000.2 (12 May 2003) (Adapted)

Define the program to accommodate evolving requirements

Manage requirements change during system development
Author Contact Information

- Suellen Eslinger
 - Distinguished Engineer
 - Software Engineering Subdivision
 - (310) 336-2906
 - Suellen.Eslinger@aero.org