Wideband GapFiller Activity-Based Commanding

Andrew B. Rowland
WGS Project Engineer
The Aerospace Corp.
Overview

• The Old Days: Time-Based Commanding

• The New Days: Activity-Based Commanding

• Design Example

• Design Considerations

• Challenges

• Summary
Time-Based Commanding

• Use Case: Placing a satellite processor variable in the telemetry wavetrain

• **Read a Step:** Operator would receive a contact support plan and see that processor variables would need to be placed in the telemetry wavetrain.

• **Write a Step:** Operator would look up addresses of variables, convert to commands, write the commands on a passplan. Second operator would check the commands.

• **Do a Step:** If all is good, third operator would send the commands and verify the results.

• **Get a Pat on the Back**
Activity-Based Commanding

• *Shift in Thinking* – Want to accomplish the **activity** of placing variables in the telemetry wavetrain
 – Let the code take care of the details
 – Variable Lookup
 – Command Generation
 – Fault recovery

• The operator is happy when the activity completes, not each individual command

• Allows the operator to focus on bigger picture
Design Example

• With WGS, there are many valid solutions to this problem of modifying the telemetry wavetrain
 – Most efficient use of modification space
 – Most expedient way to command the changes
 – Most flexible use for future activities
 – Permanent or temporary configurations
 – Etc.

• The circumstances at the time of the activity determines the solution method

• Our code is implemented on the ground segment, but could certainly be implemented in the space segment
Design Example Cont’d

• 1 Day: Design TIM – Defined requirements
• 1 Day: Pruned Requirements based on time/money
• 3 Weeks: Code and unit test ~1850 lines of code
• 1 Week: Beta test and provide feedback
• 2 Days: Fix Beta Issues
• 1 Week: Formal test, including Beta issues
• Deliver and use
• Tweak as mission needs dictate – repeat many of the steps above
Design Considerations

• Team approach critical: Operators, Coders, Satellite Engineers, Program Office

• Time and money determined the level of sophistication of our code
 – Operator specifies the desired solution method rather than the code looking at circumstances and picking a method
 – Fault recovery is done by the operator. Fault recovery could certainly be done by the code but budget did not allow for this level capability.
 – If a fault is detected, processing stops and asks operator for direction
Challenges

• Operators and Commanders are used to time-based commanding and are resistant to change methods
 – Solution is to test, test, test and demonstrate
 – Confidence in this method comes with use

• Requirements were pruned that should have been kept resulting in tweaks and retesting later
 – Learn from past experience and apply to future efforts
 – Keep design open to allow future changes
 – Choose design wisely!

• Operator knowledge atrophy and fault recovery
 – Initial and recurring operator training
 – Specific tools built to aid in fault isolation and recovery from faults
Summary

• Activity-Based commanding requires a shift in thinking

• Design, engineering and testing can be extensive and expensive

• More efficient operations, allows operator to focus on big picture

• Time and money determine level of sophistication

• Operators and engineers are still capable and can solve many problems during the contact