Goal-based Operations

Michel D. Ingham, Sc.D.
Jet Propulsion Laboratory
California Institute of Technology

Ground System Architecture Workshop 2006
“Toward a Standard for Goal-Based Operations” Working Group
Manhattan Beach, CA
March 29, 2006
Objectives

• Describe a few NASA projects that have taken first steps in the area of goal-based operations
• Highlight the benefits that these initiatives have demonstrated
• Lay out some Challenge Questions that probably need to be answered for this approach to really take hold
Steps in the Right Direction (1)

Deep Space One

Mission Objectives

Remote Agent

Mission Manager

Scripted Executive

HSTS: Planner/Scheduler

Livingstone: Diagnosis & Repair

Spacecraft Commands
Steps in the Right Direction (1)

Deep Space One

Mission Objectives

Remote Agent

Mission Manager

HSTS: Planner/Scheduler

Livingstone: Diagnosis & Repair

Scripted Executive

Sends Mission Objectives as *high-level goals* to the Planner/Scheduler.
Steps in the Right Direction (1)

Deep Space One

Mission Objectives

Remote Agent

- Mission Manager
- Scripted Executive
- HSTS: Planner/Scheduler
- Livingstone: Diagnosis & Repair

Spacecraft Commands

Plans and schedules detailed tasks (lower-level goals) to achieve the high-level goals.
Steps in the Right Direction (1)

Deep Space One

Mission Objectives

Remote Agent

- Mission Manager
- Scripted Executive
- HSTS: Planner/Scheduler
- Livingston Diagnosis Repair

Executes scripts associated with lower-level goals, issues appropriate commands.

Spacecraft Commands
Steps in the Right Direction (1)

Remote Agent

Mission Manager

Scripted Executive

HSTS: Planner/Scheduler

Livingstone: Diagnosis & Repair

Provides state estimates and suggests reconfiguration commands to Exec, by reasoning through a declarative model of the spacecraft system.
Steps in the Right Direction (2)
Developed by NASA ARC & JPL; MER Ops personnel use MAPGEN to:
- Plan Activities (Goals)
- Analyze Resources
- Edit Plans
Benefits (1)

- Robustness:
 - Control layer has flexibility in achieving goal
 - Enables integration of tiered fault management capabilities

JPL’s Mission Data System
Benefits (1)

- Robustness:
 - Control layer has flexibility in achieving goal
 - Enables integration of tiered fault management capabilities

JPL’s Mission Data System
Benefits (1)

- Robustness:
 - Control layer has flexibility in achieving goal
 - Enables integration of tiered fault management capabilities

JPL’s Mission Data System

In MDS, a Goal is defined as a constraint on a state variable, providing a natural mechanism for resource management.
Benefits (1)

- Robustness:
 - Control layer has flexibility in achieving goal
 - Enables integration of tiered fault management capabilities

JPL’s Mission Data System

- “Abstraction hierarchy” of Activity Macros bottoming out into sequences of goals on state
- Goals elaborate into supporting goals on affecting state variables (“Causal hierarchy”, per the Model)
Benefits (2)

- Lower Ops Costs
- Greater Science Return

Autonomous Sciencecraft Experiment on EO-1
• **Mission-enabling Autonomy:**
 – via integration of state-of-the-art model-based software technologies

MIT’s Titan Model-based Executive

Benefits (3)
Benefits (3)

- Mission-enabling Autonomy:
 - via integration of state-of-the-art model-based software technologies

Model-based Program

Goal Sequencer

Deductive Controller

MIT’s Titan Model-based Executive

- Executes procedural “control programs” expressed in terms of state goals

Reasons through a model to estimate state and decide how to achieve the goals

Control Program

Mode Estimation

State estimates

Observations

Plant

Mode Reconfiguration

State estimates

Configuration goals

Commands

Plant
Challenge Questions

- How do we avoid the potential for divergence and knowledge duplication due to use of multiple knowledge representations?
- How can we facilitate transitioning the operational paradigm from “product flow” to “work flow”?
- How do we design for operability (i.e., integrate goal-based operations into the end-to-end mission lifecycle)?
- Can we adapt legacy tools to this new operations paradigm?
- How can we assure the reliability of goal-based ops (V&V of goal-based ops tools)?
- How do we overcome the “cultural” hurdles to acceptance of these new methods and tools?
Multiplicity of knowledge representations

- Different modules require distinct knowledge representation
 - benefit: ability to reason at different levels of abstraction
 - drawbacks: potential divergent models, knowledge duplication
Multiplicity of knowledge representations

Barrier to wide deployment of autonomy s/w:

- numerous tasks use variety of modeling & programming languages

The Challenge:

- ✓ head toward unified representation of spacecraft
- ✓ accommodate complexities of spacecraft domain
- ✓ maintain capacity for knowledge abstraction
Transitioning from “product flow” to “work flow”
Transitioning from “product flow” to “work flow”

- Goal-based operations facilitates a shift in our approach:
 - From product flow
 - Development progressing from one tool to another through exchange of data files along a development path
 - Progress is measured by where activity is in the tool chain
 - Reverse flow to address problems is awkward, at best, and usually avoided
 - Fixes often made in place without benefit of earlier steps
 - To work flow
 - One uniform product set managed by a common tool going through successive stages of refinement
 - Progress is measured by level of completeness, validation, and approval
 - Manageable through a parallel workflow process
 - Reversing to address problems is straightforward
Goal-based operations is a natural partner to model-based systems engineering.
Integration of goal-based ops into the mission lifecycle

1. System to be controlled

2. State Analysis produces model

3. Model informs software design

4. Model informs operations

\[
\begin{align*}
\text{if } \text{Ant. N Mech OpMode & Health} = \text{not shutdown or offline} \\
\text{or Target Signal State} = \text{present} \\
\text{and Ant. N Mech OpMode & Health} = \text{on-point} \\
\text{then: Target + Noise + Background} \\
\text{else: Noise + Background}
\end{align*}
\]
Adapting legacy tools

Can we re-architect the software, but leverage the existing tools’ functionality, while providing familiar/comfortable user interfaces?
V&V of goal-based ops tools

- Comprehensive V&V plan:
 - Engine & Model validation
 - High-fidelity mission testbeds
 - Auto-code generation where practical
 - Formal V&V methods where appropriate
- Where possible, initial flight validation on spacecraft with more aggressive risk posture
 - Technology validation missions (e.g., New Millennium Program)
 - Post-primary mission spacecraft assets
- Progressive capability phasing
- Ground-to-flight migration of capabilities
- Design for variable autonomy
- Extended deployments and in-situ stress testing
Cultural hurdles to acceptance

- Part of this is a “trust” issue, somewhat related to the previous challenge question.
- This issue applies more broadly to any new technology, especially software technology.
- “If it hasn’t flown before, I don’t want to fly it” - what incentives are there for Project Managers to embrace (or at least accept) new technology? This is an organizational challenge…
Motivating a Standard for Goal-based Operations

Michel D. Ingham, Sc.D.
Jet Propulsion Laboratory
California Institute of Technology

Ground System Architecture Workshop 2006
“Toward a Standard for Goal-Based Operations” Working Group
Manhattan Beach, CA
March 29, 2006
Why bother with a Standard?

• Current ops approach doesn’t really have a “standard”, does it?
 – Each space-faring organization has its own accepted command language and set of ops processes
Because…

- New classes of mission, requiring significantly greater reuse and interoperability, are pushing towards an ops standard (whether goal-based or command-based)
Because…

- Huge endeavors like Project Constellation will be accomplished by many different organizations – can we safely assume that the disparate elements will be fully interoperable without enforcing a Standard?
But still…

- Developing a good Standard takes time
 - Probably shouldn’t rush it, and risk missing the mark

- In the near term, can probably make significant strides in promoting wider acceptance of the Goal-based Ops approach, even in the absence of a Standard
 - Will require greater discipline than we’ve shown in the past to really ARCHITECT the system
 - I’m talking about integrated architecture: of the spacecraft, of the ground system, of the operations approach…

- The trick will be to bring the Standard online before too many “bad habits” have been formed!
What belongs in the Standard?

- Acceptable representation(s) for intent?
- General form(s) for event-driven sequences (i.e., flexible time representation)?
- Ops Process?
- V&V Process?
- Human interface requirements?
- “Adjustable Autonomy” guidelines?
- Planning, scheduling and/or execution semantics? (probably not)
What type of Standard?

• Formal Standard, like Mil Specs?
 – Will require time and money. Who would foot the bill?

• Defacto Standard, like Linux?
 – Can we count on natural evolution to result in convergence?