Data Sources for Rain Fade Forecasting

Tom Shaw, Principal Engineer
tshaw@oitc.com
Ka Mitigation Techniques

- Wide-area diversity
 - Both space and ground
- Power Control
 - Encoding
 - Multi-beam power sharing
 - Variable data rates
- Transmission time shifting
Fade Prediction Strategies

- **Mission Planning**
 - Long term forecast - days to weeks to years
 - Global/Regional weather models
 - Climatology data

- **Near Earth Communication**
 - Extreme Nowcasting
 - Forecasting < 30 minutes
 - Direct measurement using Doppler radar

- **Deep Space Communication**
 - Short term forecasts - minutes to hours to days
 - Mesoscale models
 - WRF & MM5
WRF Mesoscale Model
Mesoscale Model Inputs

- Land Information
 - Land type/use
 - NDVI from USGS
 - DTED from USGS
 - Agrimet - if available
 - Soil moisture for northwest US

- Global and regional grids
 - ETA, AVN, RUC, ECMWF, etc.

- Observations
 - Surface
 - Rawindsonde
 - Doppler radar
Data Augmentation for DSN

- Deploy a mesonet for each site for direct input to model computations
 - A mesonet is a regional network of observing stations (usually surface stations) designed to diagnose mesoscale weather features and their associated processes.
- Install site specific Doppler radar located specifically to support model prediction of rain rates
Summary

- Environmental prediction can help in mitigating rain fade
 - Deep Space
 - Provides guidance for data rate selections for scientific payload transmissions.
 - Provides guidance for time shifting payload transmissions.
 - Allows for time scheduled bit rate changes to maximize payload data recovery
 - Near Space
 - Provides direct inputs to mission operations to select the optimum mitigation technique: Wide-area diversity, adaptive power control or time shifting data recovery

- Rain prediction improvements
 - For space communications, mesonets can be deployed at each site to improve model forecast accuracy.