Working Group 9B
Architecture-Centric Evolution, Evaluation & Elaboration (ACE3) of Software-Intensive Systems

Chairs
Dr. Sergio Alvarado
Dr. Scott Turner
The Aerospace Corporation

Dr. Hadar Ziv
Institute for Software Research, UC Irvine
ACE3 Session Goals

- **Address stakeholder needs in evolution, evaluation, and elaboration of architectures in software system lifecycle**
 - Presentations from members of government agencies, contractors, academia, and federally funded research and development centers

- **Promote central role of software architecture during acquisition/development of software-intensive systems**
 - Forum for elucidating high-level recommendations for improving architecture practices, representation techniques, and analysis tools
ACE3 Session Discussion Baseline

1. Elaboration
 - Architecture-based management of “requirements-creep” risk
 - Architecture constructs/tools for seamless requirement-to-implementation trace

2. Evolution
 - Architecture constructs/tools for supporting system evolution requirements
 - Maintainability
 » Upgrades, changes & integration of COTS products for system implementation
 - Extensibility
 » Increased system size, complexity, environments, services & interoperability
 - Executability
 » System performance and reliability

3. Evaluation
 - Challenges to architecture evaluation within software system acquisition
 - Architecture constructs/tools required for software system evaluation
ACE3 Presentations

• **Acquisition Perspective**
 - Frank Sisti, Air Force Space and Missile Systems Center
 - Maj. Mark Tuttle, Air Force Space and Missile Systems Center

• **Overseeing Perspective**
 - Dr. Charles Hammons, Software Engineering Institute
 - Dr. Peter Hantos, The Aerospace Corporation
 - Dr. Phillip Schmidt, The Aerospace Corporation

• **Development Perspective**
 - George Haley, Product Line Manager, Northrop Grumman
 - Jeff Garland, “Large-Scale Software Architecture Book Coauthor,” CrystalClear Software
 - Ted Faison, “Component-Based Development Book Author,” Faison Computing

• **Research Perspective**
 - Dr. Hadar Ziv, Institute for Software Research, University of California, Irvine

• **Moderators**
 - Dr. Sergio Alvarado, The Aerospace Corporation
 - Dr. Scott Turner, The Aerospace Corporation
Elaboration

• Architecture must be understandable to all stakeholders
 ✓ Software needs explicit representation in the program office (Sisti)
 ✓ Customer (government) needs only high-level architecture with key features (Sisti)

• Architecture must be elaborated in larger lifecycle context (Hantos, Ziv, Tuttle)
 ✓ Make stakeholders explicit in architecture (Ziv)

• Key UML diagrams for high-level architectures for large-scale systems (Garland)
 ✓ Context
 ✓ Component
 ✓ Component Interaction
 ✓ Layered Subsystem
 ✓ Deployment
Evolution

• Evolution more important now because of changing environment (Hammons)
 - Changing threats, rapid technological development, political environment, fluid requirements, longer service life
 - Each system serves as the seed for the next generation

• Support for system evolution must start in the architecture (Tuttle, Hammons)
 - The groundwork for evolution must be laid before the need for evolution
 - System evolution is often driven by risk reduction (Tuttle)

• Component decoupling in architecture enables continuous system evolution (Faison)
 - Decoupling enabled by standards, defined APIs, “Plug and Play”, event-based architectures, layered systems, common messaging model, and similar design elements (Faison, Hammons, Garland)
Evaluation

• Our ability to evaluate lags behind our ability to create (Hantos, Haley, Schmidt)
 ❖ Traditional metrics and evaluation processes don’t apply well to architectures (Haley, Hantos)
 ❖ Work to develop new approaches is still underway (Ziv)
 ❖ Need tools (e.g., temperature charts) to succinctly communicate evaluation to all stakeholders (Tuttle)

• Focus on bottom-line criteria for evaluation of architectures (Haley)
 ❖ Utility, Development Cost/Schedule/Risk, O&M Cost

• Architecture evaluation is a key tool for managing complexity (Schmidt) and risk (Tuttle)
 ❖ Space systems are typically very complex, distributed (Schmidt, Garland)
 ❖ Automated evaluation can identify issues otherwise lost in the complexity (Schmidt)
 ❖ We must produce architectures that can be evaluated (Schmidt, Sisti)