Architectural Approaches for Multi-Mission Ground Systems

Michael Hogan
The Aerospace Corp
Session Chair
Session Goals

• **Definition of a Multi-mission Satellite Ground Control System (GCS):**
 – System for controlling multiple families of satellites of different make/model

• **Session Goals**
 – Identify key elements of a Multi-Mission Ground Control System
 – Understand how these elements support the Multi-Mission capability
Participants

Satellite Operators
- Susan Kurtik, Jet Propulsion Laboratory
- Tina Arechiga, PanAmSat

Ground System Vendors
- David Allen, L-3 Communications/Storm Control Systems
- Pete Gaffney, Integral Systems, Inc.

Ground System Component Vendor
- Robert Andzik, RT Logic
Session Results

- **Multi-mission approach is preferred**
 - Multiple dedicated systems were too costly
 - Valid at operations, systems & component level
- **Systems must be designed for upgrade**
 - H/W & S/W Maintenance Problems
 - Personnel training and interest
 - Systems must support regression and operations testing while in use
Session Results, pg 2

- **Decouple Components**
 - Isolate mission specific functions from core
 - Isolate hardware dependencies
 - Multiple versions of APIs support evolution
 - Supports layered, tailororable architecture

- **Use of Standards**
 - Must be widely accepted
 - TCP/IP
 - CCSDS/SLE
 - CORBA
 - Not too low level
Session Results, pg 3

• Distributed Architectures
 – Architectural flexibility
 – Hardware independence/flexibility
 – Personnel and operations flexibility

• COTS Components
 – Total COTS system is not possible
 – Need some in-house development to keep maintainers trained/interested
 – Node-locked licenses inhibit s/w distribution